首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The following conjecture of Katona is proved. Let X be a finite set of cardinality n, 1 ? m ? 2n. Then there is a family F, |F| = m, such that F ∈ F, G ? X, | G | > | F | implies G ∈ F and F minimizes the number of pairs (F1, F2), F1, F2F F1 ∩ F2 = ? over all families consisting of m subsets of X.  相似文献   

2.
This paper examines the relation between convergence of the Robbins-Monro iterates Xn+1= Xn?an?(Xn)+anξn, ?(θ)=0, and the laws of large numbers Sn=anΣn?1j=0ξj→0 as n→+∞. If an is decreasing at least as rapidly as c/n, then Xnθw.p. 1 (resp. in Lp, p?1) implies Sn→0 w.p. 1 (resp. in Lp, p?1) as n→+∞. If an is decreasing at least as slowly as c?n and limn→+∞an=0, then Sn→0 w.p. 1 (resp. in Lp, p?2) implies Xnθw.p. 1 (resp. in Lp, p?2) as n →+∞. Thus, there is equivalence in the frequently examined case an?c?n. Counter examples show that the LLN must have the form of Sn, that the rate of decrease conditions are sharp, that the weak LLN is neither necessary nor sufficient for the convergence in probability of Xn to θ when an?c?n.  相似文献   

3.
If X1,…,Xn are independent identically distributed Rd-valued random vectors with probability measure μ and empirical probability measure μn, and if a is a subset of the Borel sets on Rd, then we show that P{supAan(A)?μ(A)|≥ε} ≤ cs(a, n2)e?2n2, where c is an explicitly given constant, and s(a, n) is the maximum over all (x1,…,xn) ∈ Rdn of the number of different sets in {{x1…,xn}∩A|Aa}. The bound strengthens a result due to Vapnik and Chervonenkis.  相似文献   

4.
Let X be a set of n elements. Let T3(X) be the set of all triples of X. We define a clique as a set of triples which intersect pairwise in two elements. In this paper we prove that if n?6, the minimum cardinality of a partition of T3(X) into cliques is [14(n?1)2].  相似文献   

5.
We consider the 2n sums of the form Σ?iai with the ai's vectors, | ai | ? 1, and ?i = 0, 1 for each i. We raise a number of questions about their distribution.We show that if the ai lie in two dimensions, then at most n(n2)) sums can lie within a circle of diameter √3, and if n is even at most the sum of the three largest binomial coefficients can lie in a circle of diameter √5. These are best results under the indicated conditions.If two a's are more than 60° but less than 120° apart in direction, then the bound (n[n2]) on sums lying within a unit diameter sphere is improved to (n+1[n2]) ? 2(n?1[(n?12)]).The method of Katona and Kleitman is shown to lead to a significant improvement on their two dimensional result.Finally, Lubell-type relations for sums lying in a unit diameter sphere are examined.  相似文献   

6.
The following estimate of the pth derivative of a probability density function is examined: Σk = 0Na?khk(x), where hk is the kth Hermite function and a?k = ((?1)pn)Σi = 1nhk(p)(Xi) is calculated from a sequence X1,…, Xn of independent random variables having the common unknown density. If the density has r derivatives the integrated square error converges to zero in the mean and almost completely as rapidly as O(n?α) and O(n?α log n), respectively, where α = 2(r ? p)(2r + 1). Rates for the uniform convergence both in the mean square and almost complete are also given. For any finite interval they are O(n?β) and O(n2log n), respectively, where β = (2(r ? p) ? 1)(2r + 1).  相似文献   

7.
Let {Xn} be a ?-irreducible Markov chain on an arbitrary space. Sufficient conditions are given under which the chain is ergodic or recurrent. These extend known results for chains on a countable state space. In particular, it is shown that if the space is a normed topological space, then under some continuity conditions on the transition probabilities of {Xn} the conditions for ergodicity will be met if there is a compact set K and an ? > 0 such that E {6Xn+16 — 6Xn6 ∣ Xn = x} ? ?? whenever x lies outside K and E{6Xn+16 ∣ Xn=x} is bounded, xK; whilst the conditions for recurrence will be met if there exists a compact K with E {6Xn+16 ? 6Xn6 ∣ Xn = x} ? 0 for all x outside K. An application to queueing theory is given.  相似文献   

8.
Let (Xn)n?N be a sequence of real, independent, not necessarily identically distributed random variables (r.v.) with distribution functions FXn, and Sn = Σi=1nXi. The authors present limit theorems together with convergence rates for the normalized sums ?(n)Sn, where ?: NR+, ?(n) → 0, n → ∞, towards appropriate limiting r.v. X, the convergence being taken in the weak (star) sense. Thus higher order estimates are given for the expression ∝Rf(x) d[F?(n)Sn(x) ? FX(x)] which depend upon the normalizing function ?, decomposability properties of X and smoothness properties of the function f under consideration. The general theorems of this unified approach subsume O- and o-higher order error estimates based upon assumptions on associated moments. These results are also extended to multi-dimensional random vectors.  相似文献   

9.
Let X1, X2, X3, … be i.i.d. r.v. with E|X1| < ∞, E X1 = μ. Given a realization X = (X1,X2,…) and integers n and m, construct Yn,i, i = 1, 2, …, m as i.i.d. r.v. with conditional distribution P1(Yn,i = Xj) = 1n for 1 ? j ? n. (P1 denotes conditional distribution given X). Conditions relating the growth rate of m with n and the moments of X1 are given to ensure the almost sure convergence of (1mmi=1 Yn,i toμ. This equation is of some relevance in the theory of Bootstrap as developed by Efron (1979) and Bickel and Freedman (1981).  相似文献   

10.
Let X be an n-element set and T a family of k-subsets of X. Let r be an integer, k > r ? 2. Suppose that T does not contain r + 1 members having empty intersection such that any r of them intersect non-trivially. Chvátal and Erdös conjectured that for (r + 1) k ? rn we have |F|?n?1k?1. In this paper we first prove that This conjecture holds asymptotically (Theory 1). In Theorems 4 and 5 we prove it for r = 2, K ? 5, n > no(k); k ? 3r, n > no(k, r), respectively.  相似文献   

11.
In this note a functional central limit theorem for ?-mixing sequences of I. A. Ibragimov (Theory Probab. Appl.20 (1975), 135–141) is generalized to nonstationary sequences (Xn)nN, satisfying some assumptions on the variances and the moment condition E |Xn|2 + b = O(nb2??) for some b > 0, ? > 0.  相似文献   

12.
A function f(x) defined on X = X1 × X2 × … × Xn where each Xi is totally ordered satisfying f(xy) f(xy) ≥ f(x) f(y), where the lattice operations ∨ and ∧ refer to the usual ordering on X, is said to be multivariate totally positive of order 2 (MTP2). A random vector Z = (Z1, Z2,…, Zn) of n-real components is MTP2 if its density is MTP2. Classes of examples include independent random variables, absolute value multinormal whose covariance matrix Σ satisfies ??1D with nonnegative off-diagonal elements for some diagonal matrix D, characteristic roots of random Wishart matrices, multivariate logistic, gamma and F distributions, and others. Composition and marginal operations preserve the MTP2 properties. The MTP2 property facilitate the characterization of bounds for confidence sets, the calculation of coverage probabilities, securing estimates of multivariate ranking, in establishing a hierarchy of correlation inequalities, and in studying monotone Markov processes. Extensions on the theory of MTP2 kernels are presented and amplified by a wide variety of applications.  相似文献   

13.
A function f(z) = z ? ∑n = 2anzn, an ? 0, analytic and univalent in the unit disk, is said to be in the family T1(a, b), a real and b ? 0, if ¦(zf′f) ? a¦ ? b for all z in the unit disk. A complete characterization is found for T1(a, b) when a ? 1. Also, sharp coefficient bounds are determined for certain subclasses of T1(a, b) when a < 1; however, examples are given to show that these bounds do not remain valid for the whole family.  相似文献   

14.
Let {Xn, n ≥ 1} be a real-valued stationary Gaussian sequence with mean zero and variance one. Let Mn = max{Xt, in} and Hn(t) = (M[nt] ? bn)an?1 be the maximum resp. the properly normalised maximum process, where cn = (2 log n)12, an = (log log n)cn and bn = cn ? 12(log(4π log n))cn. We characterize the almost sure limit functions of (Hn)n≥3 in the set of non-negative, non-decreasing, right-continuous, real-valued functions on (0, ∞), if r(n) (log n)3?Δ = O(1) for all Δ > 0 or if r(n) (log n)2?Δ = O(1) for all Δ > 0 and r(n) convex and fulfills another regularity condition, where r(n) is the correlation function of the Gaussian sequence.  相似文献   

15.
It is proved that Wigner's semicircle law for the distribution of eigenvalues of random matrices, which is important in the statistical theory of energy levels of heavy nuclei, possesses the following completely deterministic version. Let An=(aij), 1?i, ?n, be the nth section of an infinite Hermitian matrix, {λ(n)}1?k?n its eigenvalues, and {uk(n)}1?k?n the corresponding (orthonormalized column) eigenvectors. Let v1n=(an1,an2,?,an,n?1), put
Xn(t)=[n(n-1)]-12k=1[(n-1)t]|vn1uf(n-1)|2,0?t?1
(bookeeping function for the length of the projections of the new row v1n of An onto the eigenvectors of the preceding matrix An?1), and let finally
Fn(x)=n-1(number of λk(n)?xn,1?k?n)
(empirical distribution function of the eigenvalues of Ann. Suppose (i) limnannn=0, (ii) limnXn(t)=Ct(0<C<∞,0?t?1). Then
Fn?W(·,C)(n→∞)
,where W is absolutely continuous with (semicircle) density
w(x,C)=(2Cπ)-1(4C-x212for|x|?2C0for|x|?2C
  相似文献   

16.
In this paper we define the n-cube Qn as the poset obtained by taking the cartesian product of n chains each consisting of two points. For a finite poset X, we then define dim2X as the smallest positive integer n such that X can be embedded as a subposet of Qn. For any poset X we then have log2 |X| ? dim2X ? |X|. For the distributive lattice L = 2X, dim2L = |X| and for the crown Skn, dim2 (Skn) = n + k. For each k ? 2, there exist positive constants c1 and c2 so that for the poset X consisting of all one element and k-element subsets of an n-element set, the inequality c1 log2n < dim2(X) < c2 log2n holds for all n with k < n. A poset is called Q-critical if dim2 (X ? x) < dim2(X) for every x ? X. We define a join operation ⊕ on posets under which the collection Q of all Q-critical posets which are not chains forms a semigroup in which unique factorization holds. We then completely determine the subcollection M ? Q consisting of all posets X for which dim2 (X) = |X|.  相似文献   

17.
Let 1 < p ? 2 ? q < ∞ and X be either a Banach lattice which is p-convex and q-concave or a unitary ideal of operators on l2 which is modeled on a symmetric space which is p-convex and q-concave. If E ?X is any n-dimensional subspace, then both the distance from E to l2n and the relative projection constant of E in X are dominated by cn1p ? 1q.  相似文献   

18.
For fixed p (0 ≤ p ≤ 1), let {L0, R0} = {0, 1} and X1 be a uniform random variable over {L0, R0}. With probability p let {L1, R1} = {L0, X1} or = {X1, R0} according as X112(L0 + R0) or < 12(L0 + R0); with probability 1 ? p let {L1, R1} = {X1, R0} or = {L0, X1} according as X112(L0 + R0) or < 12(L0 + R0), and let X2 be a uniform random variable over {L1, R1}. For n ≥ 2, with probability p let {Ln, Rn} = {Ln ? 1, Xn} or = {Xn, Rn ? 1} according as Xn12(Ln ? 1 + Rn ? 1) or < 12(Ln ? 1 + Rn ? 1), with probability 1 ? p let {Ln, Rn} = {Xn, Rn ? 1} or = {Ln ? 1, Xn} according as Xn12(Ln ? 1 + Rn ? 1) or < 12(Ln ? 1 + Rn ? 1), and let Xn + 1 be a uniform random variable over {Ln, Rn}. By this iterated procedure, a random sequence {Xn}n ≥ 1 is constructed, and it is easy to see that Xn converges to a random variable Yp (say) almost surely as n → ∞. Then what is the distribution of Yp? It is shown that the Beta, (2, 2) distribution is the distribution of Y1; that is, the probability density function of Y1 is g(y) = 6y(1 ? y) I0,1(y). It is also shown that the distribution of Y0 is not a known distribution but has some interesting properties (convexity and differentiability).  相似文献   

19.
Let {Xn} be a stationary Gaussian sequence with E{X0} = 0, {X20} = 1 and E{X0Xn} = rnn Let cn = (2ln n)built12, bn = cn? 12c-1n ln(4π ln n), and set Mn = max0 ?k?nXk. A classical result for independent normal random variables is that
P[cn(Mn?bn)?x]→exp[-e-x] as n → ∞ for all x.
Berman has shown that (1) applies as well to dependent sequences provided rnlnn = o(1). Suppose now that {rn} is a convex correlation sequence satisfying rn = o(1), (rnlnn)-1 is monotone for large n and o(1). Then
P[rn-12(Mn ? (1?rn)12bn)?x] → Ф(x)
for all x, where Ф is the normal distribution function. While the normal can thus be viewed as a second natural limit distribution for {Mn}, there are others. In particular, the limit distribution is given below when rn is (sufficiently close to) γ/ln n. We further exhibit a collection of limit distributions which can arise when rn decays to zero in a nonsmooth manner. Continuous parameter Gaussian processes are also considered. A modified version of (1) has been given by Pickands for some continuous processes which possess sufficient asymptotic independence properties. Under a weaker form of asymptotic independence, we obtain a version of (2).  相似文献   

20.
Let {Xi, i?0} be a sequence of independent identically distributed random variables with finite absolute third moment. Then Darling and Erdös have shown that
for -∞<t<∞ where μn = max0?k?n k-12ki=0xi and Xn = (2 ln ln n)12. The result is extended to dependent sequences but assuming that {Xi} is a standard stationary Gaussian sequence with covariance function {ri}. When {Xi} is moderately dependent (e.g. when v(∑ni=1Xi) ? na, 0 < a < 2) we get
where Ha is a constant. In the strongly dependent case (e.g. when v(∑ni=1Xi) ? n2r(n)) we get
for-∞<t<∞.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号