首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let X1, …, Xn be n disjoint sets. For 1 ? i ? n and 1 ? j ? h let Aij and Bij be subsets of Xi that satisfy |Aij| ? ri and |Bij| ? si for 1 ? i ? n, 1 ? j ? h, (∪i Aij) ∩ (∪i Bij) = ? for 1 ? j ? h, (∪i Aij) ∩ (∪i Bil) ≠ ? for 1 ? j < l ? h. We prove that h?Πi=1nri+siri. This result is best possible and has some interesting consequences. Its proof uses multilinear techniques (exterior algebra).  相似文献   

2.
For an n × n Hermitean matrix A with eigenvalues λ1, …, λn the eigenvalue-distribution is defined by G(x, A) := 1n · number {λi: λi ? x} for all real x. Let An for n = 1, 2, … be an n × n matrix, whose entries aik are for i, k = 1, …, n independent complex random variables on a probability space (Ω, R, p) with the same distribution Fa. Suppose that all moments E | a | k, k = 1, 2, … are finite, Ea=0 and E | a | 2. Let
M(A)=σ=1s θσPσ(A,A1)
with complex numbers θσ and finite products Pσ of factors A and A1 (= Hermitean conjugate) be a function which assigns to each matrix A an Hermitean matrix M(A). The following limit theorem is proved: There exists a distribution function G0(x) = G1x) + G2(x), where G1 is a step function and G2 is absolutely continuous, such that with probability 1 G(x, M(Ann12)) converges to G0(x) as n → ∞ for all continuity points x of G0. The density g of G2 vanishes outside a finite interval. There are only finitely many jumps of G1. Both, G1 and G2, can explicitly be expressed by means of a certain algebraic function f, which is determined by equations, which can easily be derived from the special form of M(A). This result is analogous to Wigner's semicircle theorem for symmetric random matrices (E. P. Wigner, Random matrices in physics, SIAM Review9 (1967), 1–23). The examples ArA1r, Ar + A1r, ArA1r ± A1rAr, r = 1, 2, …, are discussed in more detail. Some inequalities for random matrices are derived. It turns out that with probability 1 the sharpened form
lim supn→∞i=1ni(n)|2?6An62? 0.8228…
of Schur's inequality for the eigenvalues λi(n) of An holds. Consequently random matrices do not tend to be normal matrices for large n.  相似文献   

3.
Let A be an n-square normal matrix over C, and Qm, n be the set of strictly increasing integer sequences of length m chosen from 1,…, n. For α,βQm, n denote by A[α|β] the submatrix obtained from A by using rows numbered α and columns numbered β. For k∈{0,1,…,m} write z.sfnc;αβ|=k if there exists a rearrangement of 1,…,m, say i1,…,ik, ik+1,…,im, such that α(ij)=β(ij), j=1,…,k, and {α(ik+1),…,α(im)};∩{β(ik+1),…,β(im)}=ø. Let
be the group of n-square unitary matrices. Define the nonnegative number
?k(A)= maxU∈|det(U1AU) [α|β]|
, where |αβ|=k. Theorem 1 establishes a bound for ?k(A), 0?k<m?1, in terms of a classical variational inequality due to Fermat. Let A be positive semidefinite Hermitian, n?2m. Theorem 2 leads to an interlacing inequality which, in the case n=4, m=2, resolves in the affirmative the conjecture that
?m(A)??m?1(A)????0(A)
.  相似文献   

4.
In this paper iterative schemes for approximating a solution to a rectangular but consistent linear system Ax = b are studied. Let A?Cm × nr. The splitting A = M ? N is called subproper if R(A) ? R(M) and R(A1) ?R(M1). Consider the iteration xi = M2Nxi?1 + M2b. We characterize the convergence of this scheme to a solution of the linear system. When A?Rm×nr, monotonicity and the concept of subproper regular splitting are used to determine a necessary and a sufficient condition for the scheme to converge to a solution.  相似文献   

5.
An anti-Hadamard matrix may be loosely defined as a real (0, 1) matrix which is invertible, but only just. Let A be an invertible (0, 1) matrix with eigenvalues λi, singular values σi, and inverse B = (bij). We are interested in the four closely related problems of finding λ(n) = minA, i|λi|, σ(n) = minA, iσi, χ(n) = maxA, i, j |bij|, and μ(n) = maxAΣijb2ij. Then A is an anti-Hadamard matrix if it attains μ(n). We show that λ(n), σ(n) are between (2n)?1(n4)?n2 and cn (2.274)?n, where c is a constant, c(2.274)n?χ(n)?2(n4)n2, and c(5.172)n?μ(n)?4n2 (n4)n. We also consider these problems when A is restricted to be a Toeplitz, triangular, circulant, or (+1, ?1) matrix. Besides the obvious application—to finding the most ill-conditioned (0, 1) matrices—there are connections with weighing designs, number theory, and geometry.  相似文献   

6.
This paper contains and generalizes the solution of the following classical problem:If h | n then the h-element subsets of an n-element set can be partitioned into (h?1n?1) classes so that every class contains nh disjoint h-element sets and every h-element set appears in exactly one class. A short formulation of this statement is: If h | n then the hypergraph Knh is 1-factorizable. In this paper we study the factorization and edge-coloring problems of the hypergraph Krxmh (which is the complete, regular, h-uniform, r-partite hypergraph with m vertices in each of the r classes of vertices).  相似文献   

7.
The condition Σk<xn<x(χ(n) ? z)4Ω(n)n| = o(√logx), where Ω(n) stands for the number of prime factors, counted according to multiplicity, of the positive integer n, is shown to be necessary and sufficient for the integer sequence with characteristic function χ to have divisor density z, i.e., Σd|nχ(d) = (z + o(1)) Σd|n 1 when n → ∞ if one neglects a sequence of asymptotic density zero. Among the applications, the following result, first conjectured by R. R. Hall, is proved: given any positive α, we have, for almost all n's, and uniformly with respect to z in |0, 1|,
card {d:d|n, (log d)α < z (mod 1)}=(z+o(1)) d|n1.
  相似文献   

8.
Let X1, X2, X3, … be i.i.d. r.v. with E|X1| < ∞, E X1 = μ. Given a realization X = (X1,X2,…) and integers n and m, construct Yn,i, i = 1, 2, …, m as i.i.d. r.v. with conditional distribution P1(Yn,i = Xj) = 1n for 1 ? j ? n. (P1 denotes conditional distribution given X). Conditions relating the growth rate of m with n and the moments of X1 are given to ensure the almost sure convergence of (1mmi=1 Yn,i toμ. This equation is of some relevance in the theory of Bootstrap as developed by Efron (1979) and Bickel and Freedman (1981).  相似文献   

9.
For nonlinear retarded differential equations y2n(t)?i=1mfi(t,y(t),y(gi(t)))=0 and yn(t)?i=1mPi(t)Fi(y(gi(t)))=h(t), the sufficient conditions are given on fi, pi, Fi, and h under which every bounded nonoscillatory solution of (1) or (7) tends to zero as t → ∞.  相似文献   

10.
Gauss's (2n+1)-point trigonometric interpolation formula, based upon f(xi), i = 1(1)2n+1, gives a trigonometric sum of the nth order, S2n+1(x = a0 + ∑jn = 1(ajcos jx + bjsin jx), which may be integrated to provide formulas for either direct quadrature or stepwise integration of differential equations having periodic (or near-periodic) solutions. An “orthogonal” trigonometric sum S2r+1(x) is one that satisfies
abS2r+1(x)S2r′+1(x)dx=0, r′<r
and two other arbitrarily imposable conditions needed to make S2r1(x) unique. Two proofs are given of a fundamental factor theorem for any S2n+1(x) (somewhat different from that for polynomials) from which we derive 2r-point Gaussian-type quadrature formulas, r = [n/2] + 1, which are exact for any S4r?1(x). We have
abS4r?1(x)dx=∑j=12rAjS4r?1(xj)
where the nodes xj, j = 1(1)2r, are the zeros of the orthogonal S2r+1(x). It is proven that Aj > 0 and that 2r-1 of the nodes must lie within the interval [a,b], and the remaining node (which may or may not be in [a,b]) must be real. Unlike Legendre polynomials, any [a′,b′] other than a translation of [a,b], requires different and unrelated sets of nodes and weights. Gaussian-type quadrature formulas are applicable to the numerical integration of the Gauss (2n+1)-point interpolation formulas, with extra efficiency when the latter are expressed in barycentric form. S2r+1(x), xjandAj, j = 1(1)2r, were calculated for [a,b] = [0, π/4], 2r = 2 and 4, to single-precision accuracy.  相似文献   

11.
For a given score function ψ = ψ(x, θ), let θn be Huber's M-estimator for an unknown population parameter θ. Under some mild smoothness assumptions it is known that n12n ? θ) is asymptotically normal. In this paper the stopping times τc(m) = inf{n ≥ m: n12n ? θ | > c } associated with the sequence of confidence intervals for θ are investigated. A useful representation of M-estimators is derived, which is also appropriate for proving laws of the iterated logarithm and Donskertype invariance principles for (πn)n.  相似文献   

12.
It has been conjectured that if A is a doubly stochastic nn matrix such that per A(i, j)≥perA for all i, j, then either A = Jn, then n × n matrix with each entry equal to 1n, or, up to permutations of rows and columns, A = 12(In + Pn), where Pn is a full cycle permutation matrix. This conjecture is proved.  相似文献   

13.
Let A be the Clifford algebra constructed over a quadratic n-dimensional real vector space with orthogonal basis {e1,…, en}, and e0 be the identity of A. Furthermore, let Mk(Ω;A) be the set of A-valued functions defined in an open subset Ω of Rm+1 (1 ? m ? n) which satisfy Dkf = 0 in Ω, where D is the generalized Cauchy-Riemann operator D = ∑i = 0m ei(??xi) and k? N. The aim of this paper is to characterize the dual and bidual of Mk(Ω;A). It is proved that, if Mk(Ω;A) is provided with the topology of uniform compact convergence, then its strong dual is topologically isomorphic to an inductive limit space of Fréchet modules, which in its turn admits Mk(Ω;A) as its dual. In this way, classical results about the spaces of holomorphic functions and analytic functionals are generalized.  相似文献   

14.
For the eigenvalues λi of an n × n matrix A the inequality
ii|2(6A64 ? 126D62)12
is proved, where D ? AA1 ? A1A and 6 ● 6; denotes the euclidean norm. Conditions for equality are stated.  相似文献   

15.
Let a complex pxn matrix A be partitioned as A′=(A1,A2,…,Ak). Denote by ?(A), A′, and A? respectively the rank of A, the transpose of A, and an inner inverse (or a g-inverse) of A. Let A(14) be an inner inverse of A such that A(14)A is a Hermitian matrix. Let B=(A(14)1,A(14)2,…,Ak(14)) and ρ(A)=i=1kρ(Ai).Then the product of nonzero eigenvalues of BA (or AB) cannot exceed one, and the product of nonzero eigenvalues of BA is equal to one if and only if either B=A(14) or Ai>Aj1=0 for all ij,i, j=1,2,…,k . The results of Lavoie (1980) and Styan (1981) are obtained as particular cases. A result is obtained for k=2 when the condition ρ(A)=i=1kρ(Ai) is no longer true.  相似文献   

16.
A new result on products of matrices is proved in the following theorem: let Mi (i=1,2,…) be a bounded sequence of square matrices, and K be the l.u.b. of the spectral radii ρ(Mi). Then for any positive number ε there is a constant A and an ordering p(j) (j = 1,2,…) of the matrices such that
j=1nMp(j)?A·(K+ε)n (n = 1,2,…)
. The ordering is well defined by p(j), a one-to-one mapping on the set of positive integers. In general the inequality does not hold for any ordering p(j) (a counterexample is provided); however, some sufficient conditions are given for the result to remain true irrespective of the order of the matrices.  相似文献   

17.
We show that in the evolution of the random d-uniform hypergraph Gd(n,M) the phase transition occurs when M=n/d(d−1)+O(n2/3). We also prove local limit theorems for the distribution of the size of the largest component of Gd(n,M) in the subcritical and in the early supercritical phase.  相似文献   

18.
For a finite group G and a set I ? {1, 2,…, n} let
G(n,I) = ∑g ∈ G ε1(g)?ε2(g)???εn(g)
,where
εi(g)=g if i=∈ I,
εl(g)=l if i=∈ I.
We prove, among other results, that the positive integers
tr (eG(n,I1)+?+eG(n,Ir))k:n,r,k,?1, Ij?{1,…,n}, 1?|ij|?3
for 1 ? j ? r, Ij1Ij2Ij3Ij4 = Ø for any 1 ? j1 <j2 <j3 <j4 ? r, determine G up to isomorphism. We also show that under certain assumptions finite groups are determined up to isomorphism by the number of their subgroups.  相似文献   

19.
Elliptic boundary value problems for systems of nonlinear partial differential equations of the form Fi(x, u1, u2,…, uN,?ui?xj, ?pi?2ui?xj ?xk) = ?i(x), x ? Rn, i = 1(1)N, j, k = 1(1)n, pi ? 0, ? being a small parameter, with Dirichlet boundary conditions are considered. It is supposed that a formal approximation Z is given which satisfies the boundary conditions and the differential equations upto the order χ(?) = o(1) in some norm. Then, using the theory of differential inequalities, it is shown that under certain conditions the difference between the exact solution u of the boundary value problem and the formal approximation Z, taken in the sense of a suitable norm, can be made small.  相似文献   

20.
The matrix equation fH(A)=∑CijA1iHAj=W, H >0, W ?0, is studied. In the case A1H+HA = W[H?A1HA = W], the controllability matrix of (A1,W) is used to determine the number of eigenvalues of A on the imaginary axis [on the unit circle]. As an application a result of Pták on the critical exponent of the spectral norm is obtained. Estimates for the eigenvalues of A satisfying fH(A) = M are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号