首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let G be a minimally k-connected graph of order n and size e(G).Mader [4] proved that (i) e(G)?kn?(k+12); (ii) e(G)?k(n?k) if n?3k?2, and the complete bipartite graph Kk,n?k is the only minimally k-connected graph of order; n and size k(n?k) when k?2 and n?3k?1.The purpose of the present paper is to determine all minimally k-connected graphs of low order and maximal size. For each n such that k+1?n?3k?2 we prove e(G)??(n+k)28? and characterize all minimally k-connected graphs of order n and size ?((n+k)28?.  相似文献   

2.
Bondy conjectured [1] that: if G is a k-connected graph, where k ≥ 2, such that the degree-sum of any k + 1 independent vertices is at least m, then G contains a cycle of length at least: Min(2m(k + 1), n) (n denotes the order of G). We prove here that this result is true.  相似文献   

3.
A topological generalization of the uniqueness of duals of 3-connected planar graphs will be obtained. A graph G is uniquely embeddable in a surface F if for any two embeddings ?1, ?2:G → F, there are an autohomeomorphism h:FF and an automorphism σ:GG such that h°?1 = ?2°σ. A graph G is faithfully embedabble in a surface F if there is an embedding ?:G → F such that for any automorphism σ:GG, there is an autohomeomorphism h:FF with h°? = f°σ. Our main theorems state that any 6-connected toroidal graph is uniquelly embeddable in a torus and that any 6-connected toroidal graph with precisely three exceptions is faithfully embeddable in a torus. The proofs are based on a classification of 6-regular torus graphs.  相似文献   

4.
A simple graph with n vertices is called Pi-connected if any two distinct vertices are connected by an elementary path of length i. In this paper, lower bounds of the number of edges in graphs that are both P2- and Pi-connected are obtained. Namely if i?12(n+1), then |E(G)|?((4i?5)/(2i?2))(n?1), and if i > 12(n+ 1), then |E(G)|?2(n?1) apart from one exeptional graph. Furthermore, extremal graphs are determined in the former.  相似文献   

5.
Every 2-connected graph G with δ ? (v + κ)3 is hamiltonian where v denotes the order, δ the minimum degree and κ the point connectivity of G.  相似文献   

6.
Let G be a graph with chromatic number χ(G) and let t(G) be the minimum number of vertices in any color class among all χ(G)-vertex colorings of G. Let H′ be a connected graph and let H be a graph obtained by subdividing (adding extra vertices to) a fixed edge of H′. It is proved that if the order of H is sufficiently large, the ith Ramsey number ri(G, H) equals [((χ(G)?1)(|H|?1)+t(G)?1)i]+1.  相似文献   

7.
The toughness of a graph G is defined as the largest real number t such that deletion of any s points from G results in a graph which is either connected or else has at most s/t components. Clearly, every hamiltonian graph is 1-tough. Conversely, we conjecture that for some t0, every t0-tough graph is hamiltonian. Since a square of a k-connected graph is always k-tough, a proof of this conjecture with t0 = 2 would imply Fleischner's theorem (the square of a block is hamiltonian). We construct an infinite family of (32)-tough nonhamiltonian graphs.  相似文献   

8.
A theorem is proved that is (in a sense) the best possible improvement on the following theme: If G is an undirected graph on n vertices in which |Γ(S)| ≥ 13(n + | S | + 3) for every non-empty subset S of the vertices of G, then G is Hamiltonian.  相似文献   

9.
10.
For a graph G, let ?(G) denote the maximum number k such that G contains a circuit with k diagonals.Theorem. For any graph G with minimum valencyn? 3, ?(G) ? 12 (n+1)(n-2).If the equality holds and G is connected, then either G is isomorphic to Kn+1 or G is separable and each of its terminal blocks is isomorphic to Kn+1, or Kn+1 with one edge subdivided.  相似文献   

11.
A graph G of order p ? 3 is called n-hamiltonian, 0 ? n ? p ? 3, if the removal of any m vertices, 0 ? m ? n, results in a hamiltonian graph. A graph G of order p ? 3 is defined to be n-hamiltonian, ?p ? n ? 1, if there exists ?n or fewer pairwise disjoint paths in G which collectively span G. Various conditions in terms of n and the degrees of the vertices of a graph are shown to be sufficient for the graph to be n-hamiltonian for all possible values of n. It is also shown that if G is a graph of order p ? 3 and K(G) ? β(G) + n (?p ? n ? p ? 3), then G is n-hamiltonian.  相似文献   

12.
A function diagram (f-diagram) D consists of the family of curves {1?ñ} obtained from n continuous functions fi:[0,1]→R(1?i?n). We call the intersection graph of D a function graph (f-graph). It is shown that a graph G is an f-graph if and only if its complement ? is a comparability graph. An f-diagram generalizes the notion of a permulation diagram where the fi are linear functions. It is also shown that G is the intersection graph of the concatenation of ?k permutation diagrams if and only if the partial order dimension of G? is ?k+1. Computational complexity results are obtained for recognizing such graphs.  相似文献   

13.
Denote by M(n) the smallest positive integer such that for every n-element monoid M there is a graph G with at most M(n) vertices such that End(G) is isomorphic to M. It is proved that 2(1 + o(1))nlog2n ≤M(n)≤n · 2n + O(n). Moreover, for almost all n-element monoids M there is a graph G with at most 12 · n · log2n + n vertices such that End(G) is isomorphic to M.  相似文献   

14.
The binding number of a graph G, bind(G), is defined; some examples of its calculation are given, and some upper bounds for it are proved. It is then proved that, if bind(G) ≥ c, then G contains at least |G| c(c + 1) disjoint edges if 0 ≤ c ≤ 12, at least | G | (3c ? 2)3c ? 2(c ? 1)c disjoint edges if 1 ≤ c ≤ 43, a Hamiltonian circuit if c ≥ 32, and a circuit of length at least 3(| G | ?1)(c ? 1)c if 1 < c ≤ 32 and G is not one of two specified exceptional graphs. Each of these results is best possible.The Anderson number of a graph is defined. The Anderson numbers of a few very simple graphs are determined; and some rather weak bounds are obtained, and some conjectures made, on the Anderson numbers of graphs in general.  相似文献   

15.
Let G denote the complement of a graph G, and x(G), β1(G), β4(G), α0(G), α1(G) denote respectively the chromatic number, line-independence number, point-independence number, point-covering number, line-covering number of G, Nordhaus and Gaddum showed that for any graph G of order p, {2√p} ? x(G) + x(G) ? p + 1 and p ? x(G)·x(G) ? [(12(p + 1))2]. Recently Chartrand and Schuster have given the corresponding inequalities for the independence numbers of any graph G. However, combining their result with Gallai's well known formula β1(G) + α1(G) = ?, one is not deduce the analogous bounds for the line-covering numbers of G andG, since Gallai's formula holds only if G contains no isolated vertex. The purpose of this note is to improve the results of Chartland and Schuster for line-independence numbers for graphs where both G andG contain no isolated vertices and thereby allowing us to use Gallai's formula to get the corresponding bounds for the line-covering numbers of G.  相似文献   

16.
An edge e of a k-connected graph G is said to be a removable edge if G?e is still k-connected. A k-connected graph G is said to be a quasi (k+1)-connected if G has no nontrivial k-separator. The existence of removable edges of 3-connected and 4-connected graphs and some properties of quasi k-connected graphs have been investigated [D.A. Holton, B. Jackson, A. Saito, N.C. Wormale, Removable edges in 3-connected graphs, J. Graph Theory 14(4) (1990) 465-473; H. Jiang, J. Su, Minimum degree of minimally quasi (k+1)-connected graphs, J. Math. Study 35 (2002) 187-193; T. Politof, A. Satyanarayana, Minors of quasi 4-connected graphs, Discrete Math. 126 (1994) 245-256; T. Politof, A. Satyanarayana, The structure of quasi 4-connected graphs, Discrete Math. 161 (1996) 217-228; J. Su, The number of removable edges in 3-connected graphs, J. Combin. Theory Ser. B 75(1) (1999) 74-87; J. Yin, Removable edges and constructions of 4-connected graphs, J. Systems Sci. Math. Sci. 19(4) (1999) 434-438]. In this paper, we first investigate the relation between quasi connectivity and removable edges. Based on the relation, the existence of removable edges in k-connected graphs (k?5) is investigated. It is proved that a 5-connected graph has no removable edge if and only if it is isomorphic to K6. For a k-connected graph G such that end vertices of any edge of G have at most k-3 common adjacent vertices, it is also proved that G has a removable edge. Consequently, a recursive construction method of 5-connected graphs is established, that is, any 5-connected graph can be obtained from K6 by a number of θ+-operations. We conjecture that, if k is even, a k-connected graph G without removable edge is isomorphic to either Kk+1 or the graph Hk/2+1 obtained from Kk+2 by removing k/2+1 disjoint edges, and, if k is odd, G is isomorphic to Kk+1.  相似文献   

17.
Let G be a graph with vertex-set V(G) and edge-set X(G). Let L(G) and T(G) denote the line graph and total graph of G. The middle graph M(G) of G is an intersection graph Ω(F) on the vertex-set V(G) of any graph G. Let F = V′(G) ∪ X(G) where V′(G) indicates the family of all one-point subsets of the set V(G), then M(G) = Ω(F).The quasi-total graph P(G) of G is a graph with vertex-set V(G)∪X(G) and two vertices are adjacent if and only if they correspond to two non-adjacent vertices of G or to two adjacent edges of G or to a vertex and an edge incident to it in G.In this paper we solve graph equations L(G) ? P(H); L(G) ? P(H); P(G) ? T(H); P(G) ? T(H); M(G) ? P(H); M(G) ? P(H).  相似文献   

18.
Let G(itk, p) denote the class of k-partite graphs, where each part is a stable set of cardinality p and where the edges between any pair of stable sets are those of a perfect matching. Maru?i? has conjectured that if G belongs to G(k, p) and is connected then G is hamiltonian. It is proved that the conjecture is true for k ≤ 3 or p ≤ 3; but for k ≥ 4 and p ≥ 4 a non-hamiltonian connected graph in G(k, p) is constructed.  相似文献   

19.
Let F be a family of subsets of S and let G be a graph with vertex set V={xA|A ∈ F} such that: (xA, xB) is an edge iff A?B≠0/. The family F is called a set representation of the graph G.It is proved that the problem of finding minimum k such that G can be represented by a family of sets of cardinality at most k is NP-complete. Moreover, it is NP-complete to decide whether a graph can be represented by a family of distinct 3-element sets.The set representations of random graphs are also considered.  相似文献   

20.
Let G be a k-connected graph where k≥3. It is shown that if G contains a path L of length l then G also contains a cycle of length at least ((2k ? 4)(3k ? 4)) l. This result is obtained from a constructive proof that G contains 3k2 ? 7k + 4 cycles which together cover every edge of L at least 2k2 ? 6k + 4 times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号