首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper describes the application of thin-layer chromatography (TLC) combined with densitometry to simultaneous determination of levofloxacin hemihydrate (LEV) and ambroxol hydrochloride (AMB) in bulk and tablets. The separation was achieved on aluminum sheet of silica gel 60 F 254 using chloroform: methanol: toluene: ammonia (10: 6: 3: 0.8 v/v/v/v) as mobile phase. Quantification was carried out densitometrically at 245 nm. This system was found to give compact spots for LEV (R f value of 0.4) and AMB (R f value of 0.7). The calibration curves for LEV and AMB was found to be linear between 9960–16600 ng/spot (r 2 = 0.999) and 600–1000 ng/spot (r 2 = 0.999), respectively. The mean percentage recoveries from tablets for LEV and AMB were 99.45% and 99.58%, respectively. The TLC-densitometry method has many advantages, such as simplicity, reasonable sensitivity, rapidity, and low cost, and it can be successfully used in routine analysis of both these drugs in tablet formulations.  相似文献   

2.
Simvastatin and ezetimibe are used to treat hyperlipidemia. A simple, selective and stability-indicating HPTLC method has been established for analysis of simvastatin and ezetimibe. The method has been validated so that both drugs can routinely be analyzed simultaneously. The method uses aluminum-backed silica gel 60F254 TLC plates as stationary phase with n-hexane–acetone 6:4 (v/v) as mobile phase. Densitometric analysis of both drugs was carried out in absorbance mode at 234 nm. This system was found to give compact bands for simvastatin and ezetimibe (R F 0.39 ± 0.05 and 0.50 ± 0.05, respectively). Linear relationships were obtained between response and amount of drug in the range 200–1,600 ng per band with high correlation coefficients (r 2 = 0.9917 ± 0.0018 for simvastatin and r 2 = 0.9927 ± 0.0021 for ezetimibe). The method was validated for precision, robustness, and recovery. The limits of detection and quantitation were 25 and 150 ng per band, respectively. Simvastatin and ezetimibe were subjected degradation by acid, pH 6.8 phosphate buffer, oxidation, dry heat, and wet heat. The degradation products were well resolved from the pure drug with significantly different R F values. Because the method could effectively separate the drug from its degradation products, it can be used for stability-indicating analysis.  相似文献   

3.
A simple, accurate, selective, precise, economical and stability-indicating high-performance thin-layer chromatographic method for analysis of forskolin in crude drug and in pharmaceutical dosage form was developed and validated. The method was developed on TLC aluminium plates precoated with silica gel 60F-254 using solvent system benzene:methanol (9:1, v/v), which gives compact spot of forskolin (R f value 0.25 ± 0.02). Densitometric analysis of forskolin was carried out in the absorbance mode at 545 nm after spraying with anisaldehyde sulphuric acid. The linear regression analysis data for the calibration plots showed good linear relationship with r = 0.994 and 0.994 with respect to peak height and peak area, respectively, in the concentration range 100–1,000 ng per spot. The limits of detection and quantification were 8.1 and 26.9 ng per spot, respectively. The proposed method was applied for determination of forskolin in Coleus forskohlii root and in capsule dosage forms, which showed 0.18 and 0.57% w/w of forskolin. Forskolin was subjected to acid and alkali hydrolysis, oxidation, photodegradation and heat degradation. It was observed that the drug is susceptible to acid, base hydrolysis, oxidation, photo-oxidation and heat degradation. Statistical analysis proves that the method is repeatable, selective and accurate for the estimation of forskolin in crude drug and in pharmaceutical dosage forms. The developed method effectively resolved the forskolin from components of C. forskohlii root, from excipients of capsule as well as the degradation products of forskolin hence, it can be employed for routine analysis and as a stability-indicating method.  相似文献   

4.
A rapid, sensitive and specific high‐performance thin‐layer chromatographic (HPTLC) method was developed and validated for determination of gliotoxin in Aspergillus infected immunocompromised patients with invasive aspergillosis (IA). Densitometric analysis of gliotoxin was carried out in the absorbance mode at 254 nm after single‐step extraction with chloroform. The method uses TLC aluminum plates pre‐coated with silica gel 60F‐254 as a stationary phase and toluene–isoamyl alcohol–methanol (10:0.5:0.5, v/v/v) as mobile phase, which gives compact spot of gliotoxin (Rf = 0.51). The calibration curve was linear (r2 ≥ 0.994) between peak area and concentration in the tested range of 100–1000 ng spot?1 with minimum detectable range 0.025 ng μ?1 of serum sample. The mean ± SD value of slope and intercept of the standard chromatogram of gliotoxin were found to be 523.2 ± 1.555635 and 915.8 ± 30.68843, respectively. The developed method is simple, rapid, precise and less costly than earlier diagnostic methods, and different serum samples can be run on a single TLC plate for comparative analysis. The proposed method can be used to analyze gliotoxin in patient serum for easy, rapid and cost‐effective diagnosis of IA. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Abstract

Copolymerization of α-methylstyrene and N-cyclohexylacrylamide was carried out in toluene at 60 ± 1°C using azobisisobutyronitrile as the free-radical initiator. The total concentration of the comonomers was 1.5 mol·L?1 in the solvent. The copolymers were characterized by 1H-NMR and 13C-NMR spectroscopy, and the copolymer compositions were determined primarily from the 1H-NMR spectra. The reactivity ratios were found to be r 1 = 0.08 ± 0.01 and r 2 = 2.45 ± 0.03 by the Fineman-Ross method, and r 1 = 0.06 ± 0.01 and r 2 = 2.43 ± 0.08 by the Kelen-Tüdös method. Mean sequence lengths in the copolymer were estimated from r 1 and r 2 values.  相似文献   

6.
In the present study a novel stability‐indicating high‐performance thin‐layer chromatography (HPTLC) method for quantitative determination of silybin in bulk drug and nanoemulsion formulation has been developed and validated on silica using solvent chloroform–acetone–formic acid (9 : 2 : 1 v/v/v) (Rf of silybin 0.46 ± 0.05) in the absorbance mode at 296 nm. The method showed a good linear relationship (r2 ± 0.999) in the concentration range 25–1500 ng per spot. It was found to be linear, accurate, precise, specific, robust and stability‐indicating and can be applied for quality control and standardization of several multi‐component hepatoprotective formulations as well as for stability testing of different dosage forms. The method proposed was also used to investigate the kinetics of acidic and alkaline degradation processes by quantification of drug at different temperature to calculate the activation energy and half‐life for silymarin degradation. Copyright © 2009 John Wiley & Sons, Ltd  相似文献   

7.
A simple, sensitive, selective and precise high‐performance thin‐layer chromatographic method was developed for determination of lipid A (MPLA) adjuvant as a bulk and in solid fat nanoemulsions. Chromatographic separations were performed on thin‐layer chromatography aluminum plates precoated with silica gel 60 F‐254 as stationary phase and chloroform–methanol–ethyl acetate solution (10:2:4, v/v/v) as mobile phase. With this solvent system, compact spots for MPLA at Rf value 0.80 ± 0.02 were obtained. Densitometric analysis of MPLA was carried out in absorbance mode at 357 nm. Linear regression analysis for the calibration plots showed good linear relationship with r = 0.9996 in the concentration range of 20–100 ng/spot. The mean values (±SD) of slope and intercept were found to be 7.355 ± 0.006 and 109.52 ± 0.170, respectively. Limits of detection (LOD) and quantitation (LOQ) were observed at 3.096 and 9.382 ng/spot, respectively.The method was validated for precision, accuracy, robustness and recovery as per the International Conference on Harmonization guidelines. Statistical analysis proved that the developed method for quantification of MPLA as a bulk and in solid fat nanoemulsions is reproducible, selective and economical. This method could be applied for quantitative assay of MPLA in lipid‐based vaccine formulations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Copolymers of the poly(N,N-dimethyl-N,N-diallylammonium chloride) macromonomer (1′) with acrylamide (2) with a high content of cationic groups (up to 50%) were synthesized. The relative activities r 1 and r 2 were calculated. The relative activities calculated by the Kelen—Tudos (r 1 = 0.057±0.009, r 2 = 1.57±0.12) and Feynman—Ross (r 1 = 0.055±0.011, r 2 = 1.58±0.14) methods are in accordance. The intrinsic viscosity and the yield of copolymers were found to decrease with an increase in the molar fraction of macromonomer 1′ in the monomer mixture. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 515–518, March, 2007.  相似文献   

9.
Bulk radical copolymerization of methyl acrylate (MeA, M1) with styrene (St, M2) in presence and absence of ZnCl2 as complexing agent was studied. 1H-NMR spectra were used to establish copolymer composition and sequence distribution. The methoxy group signal was observed to be split due to pentads, but the analysis of sequence distribution is possible only at triad level. Both composition and sequence distribution data confirmed that bulk radical copolymerization respects quite well the terminal addition model; the values of r1 = 0.14 ± 0.02 (from composition data) and r1 = 0.25 ± 0.03 (from sequence distribution data) and r2 = 0.83 ± 0.10 (from composition data) were found. The presence of ZnCl2 increases the probability of alternating addition, e.g., for [ZnCl2]/[MeA] = 0.2, r1 = 0.03 ± 0.02 and r2 = 0.17 ± 0.03. The radical copolymer obtained in bulk in the absence of ZnCl2 presents a coisotactic configuration with σ = 0.75 ± 0.03, but the presence of the complexing agent reduces the probability of coisotactic addition, e.g., for [ZnCl2]/[MeA] = 0.2, σ = 0.52 ± 0.03.  相似文献   

10.
Copolymers of 2-sulfoethyl methacrylate, (SEM) were prepared with ethyl methacrylate, ethyl acrylate, vinylidene chloride, and styrene in 1,2-dimethoxyethane solution with N,N′-azobisisobutyronitrile as initiator. The monomer reactivity ratios with SEM (M1) were: vinylidene chloride, r1 = 3.6 ± 0.5, r2 = 0.22 ± 0.03; ethyl acrylate, r1 = 3.2 ± 0.6, r2 = 0.30 ± 0.05; ethyl methacrylate, r1 = 2.0 ± 0.4, r2 = 1.0 ± 0.1; styrene, r1 = 0.6 ± 0.2, r2 = 0.37 ± 0.03. The values of the copolymerization parameters calculated from the monomer reactivity ratios were e = +0.6 and Q = 1.4. Comparison of the monomer reactivities indicates that SEM is similar to ethyl methacrylate with regard to copolymerization reactivity in 1,2-dimethoxyethane solution. The sodium salt of 2-sulfoethyl methacrylate, SEM?Na, was copolymerized with 2-hydroxyethyl methacrylate (M2) in water solution. Reactivity ratios of r1 = 0.7 ± 0.1 and r2 = 1.6 ± 0.1 were obtained, indicating a lower reactivity of SEM?Na in water as compared to SEM in 1,2-dimethoxyethane. This decreased reactivity was attributed to greater ionic repulsion between reacting species in the aqueous medium.  相似文献   

11.

A simple, sensitive, selective, precise and stability indicating high-performance thin-layer chromatographic method was developed for the determination of tamsulosin (TAM) in bulk and tablet formulation. Validation was carried out in compliance with International Conference on Harmonization guidelines. The method employed thin-layer chromatography aluminium plates pre-coated with silica gel 60F254 as the stationary phase and the mobile phase consisted of acetonitrile/methanol/dichloromethane (2.0: 1.0: 2.0, v/v/v). This solvent system was found to give compact spots for tamsulosin (R f = 0.27 ± 0.02). Densitometric analysis of TAM was carried out in the absorbance mode at 286 nm. Linear regression analysis showed good linearity (r 2 = 0.9993) with respect to peak area in the concentration range of 300–800 ng per band. The method was validated for precision, accuracy, ruggedness and recovery. Limits of detection and quantitation were 8.49 and 25.72 ng per band, respectively. TAM was subjected to acid and alkali hydrolysis, oxidation, photo degradation, dry heat and wet heat treatment. The drug underwent degradation under acidic, basic and photolytic conditions. The degraded products were well separated from the pure drug. Statistical analysis proved that the developed method, used for quantification of TAM as a bulk drug and present in pharmaceutical tablets, was reproducible and selective.

  相似文献   

12.
(Vinyl acetate)/(ethyl acrylate) (V/E) and (vinyl acetate)/(butyl acrylate) (V/B) copolymers were prepared by free radical solution polymerization. 1H-NMR spectra of copolymers were used for calculation of copolymer composition. The copolymer composition data were used for determining reactivity ratios for the copolymerization of vinyl acetate with ethyl acrylate and butyl acrylate by Kelen-Tudos (KT) and nonlinear Error in Variables methods (EVM). The reactivity ratios obtained are rv = 0.03 ± 0.03, rE = 4.68 ± 1.70 (KT method); rv = 0.03 ± 0.01, rE = 4.60 ± 0.65 (EV method) for (V/E) copolymers and rv ? 0.03 ± 0.01, rB ? 6.67 ± 2.17 (KT method); rv = 0.03 ± 0.01, rB = 7.43 ± 0.71 (EV method) for (V/B) copolymers. Microstructure was obtained in terms of the distribution of V- and E-centered triads and V- and B-centered triads for (V/E) and (V/B) copolymers respectively. Homonuclear 1H 2D-COSY NMR spectra were also recorded to ascertain the existence of coupling between protons in (V/E) as well as (V/B) copolymers. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
The paper reports the synthesis and characterization of vanadium complexes of N,N′-(±)-trans-bis(2,4-dihydroxyacetophenone)-1,2-cyclohexanediamine (H2L1) and N,N′-(±)-trans-bis(2,4-dihyroxy-5-nitroacetophenone)-1,2-chyclohexanediamine (H2L2). All the complexes were characterized by elemental analysis, magnetic susceptibility measurements, infrared and electronic spectra, and thermogravimetric analysis. The X-ray patterns of the [VO(L1)] · H2O (I) and [VO(L2)] · H2O (II) complexes show the monoclinic system with the unit cell parameters a = 26.1352, b = 11.7149, c = 6.0401 β = 115.38° and a = 29.3787, b = 12.9398, c = 5.9175 β = 96.84°, respectively. The complexes I and II catalyze the oxidation of styrene in the presence of hydrogen peroxide.  相似文献   

14.
The constant-volume combustion energies of the lead salts of 2-hydroxy-3,5-dinitropyridine (2HDNPPb) and 4-hydroxy-3,5-dinitropyridine (4HDNPPb), ΔU c (2HDNPPb(s) and 4HDNPP(s)), were determined as –4441.92±2.43 and –4515.74±1.92 kJ mol–1 , respectively, at 298.15 K. Their standard enthalpies of combustion, Δc m H θ(2HDNPPb(s) and 4HDNPPb(s), 298.15 K), and standard enthalpies of formation, Δr m H θ(2HDNPPb(s) and 4HDNPPb(s), 298.15 K) were as –4425.81±2.43, –4499.63±1.92 kJ mol–1 and –870.43±2.76, –796.65±2.32 kJ mol–1 , respectively. As two combustion catalysts, 2HDNPPb and 4HDNPPb can enhance the burning rate and reduce the pressure exponent of RDX–CMDB propellant.  相似文献   

15.
The heat capacity of natural mineral, pyromorphite Pb5(PO4)3Cl, was measured over the temperature range 4.2–320 K using low-temperature adiabatic calorimetry. An anomalous temperature dependence of heat capacity with a maximum at 273.24 K was observed between 250 and 290 K. The heat capacity, entropy, enthalpy, and reduced thermodynamic potential of pyromorphite were calculated and tabulated over the temperature range 5–320 K. The standard thermodynamic functions of the mineral are C p298.15o = 414.98 ± 0.44 J/(mol K), S 298.15o = 585.31 ± 0.99 J/(mol K), H 298.15oH 0o = 80.90 ± 0.08 kJ/mol, and Φ298.15o = 313.97 ± 0.84 J/(mol K).  相似文献   

16.
The paper presents the application of pre-chromatographic derivatisation reaction of aminophosphonic acids (glyphosate and glufosinate) with phenylisothiocyanate in thin-layer chromatography (TLC). Silica gel as stationary phase and a mixture of methanol–water–diethyl ether (2:1:1, v/v/v) and ethanol–water–diethyl ether (4:1:2, v/v/v) were used as the mobile phase, respectively. Detection was performed by spraying TLC plates with a freshly prepared mixture of sodium azide (1%), starch solution (1% for glyphosate and 2% for glufosinate), and potassium iodide (1.0 × 10–2 mol L?1) adjusted to pH 6.0 and exposed to iodine vapour for 15 s. Both glyphosate and glufosinate as phenylthiocarbamates (PTC-derivatives) were visible as white spots against a violet background which were converted into chromatograms using TLSee software. The calibration curves for glyphosate and glufosinate were within the ranges of 8.45–84.5 ng and 1.98–79.2 ng per spot, respectively. The limits of detection and quantification for glyphosate were at a level of 4 and 8.45 ng per spot, and for glufosinate were 0.99 and 1.78 ng per spot, respectively. The proposed method was successfully used in the determination of aminophosphonic acids in spiked plants samples.  相似文献   

17.
A novel solid complex, formulated as Ho(PDC)3 (o-phen), has been obtained from the reaction of hydrate holmium chloride, ammonium pyrrolidinedithiocarbamate (APDC) and 1,10-phenanthroline (o-phen·H2O) in absolute ethanol, which was characterized by elemental analysis, TG-DTG and IR spectrum. The enthalpy change of the reaction of complex formation from a solution of the reagents, ΔrHmθ (sol), and the molar heat capacity of the complex, cm, were determined as being –19.161±0.051 kJ mol–1 and 79.264±1.218 J mol–1 K–1 at 298.15 K by using an RD-496 III heat conduction microcalorimeter. The enthalpy change of complex formation from the reaction of the reagents in the solid phase, ΔrHmθ(s), was calculated as being (23.981±0.339) kJ mol–1 on the basis of an appropriate thermochemical cycle and other auxiliary thermodynamic data. The thermodynamics of reaction of formation of the complex was investigated by the reaction in solution at the temperature range of 292.15–301.15 K. The constant-volume combustion energy of the complex, ΔcU, was determined as being –16788.46±7.74 kJ mol–1 by an RBC-II type rotating-bomb calorimeter at 298.15 K. Its standard enthalpy of combustion, ΔcHmθ, and standard enthalpy of formation, ΔfHmθ, were calculated to be –16803.95±7.74 and –1115.42±8.94 kJ mol–1, respectively.  相似文献   

18.
19.
Condensed and gas phase enthalpies of formation of 3:4,5:6-dibenzo-2-hydroxymethylene-cyclohepta-3,5-dienenone (1, (−199.1 ± 16.4), (−70.5 ± 20.5) kJ mol−1, respectively) and 3,4,6,7-dibenzobicyclo[3.2.1]nona-3,6-dien-2-one (2, (−79.7 ± 22.9), (20.1 ± 23.1) kJ mol−1) are reported. Sublimation enthalpies at T=298.15 K for these compounds were evaluated by combining the fusion enthalpies at T = 298.15 K (1, (12.5 ± 1.8); 2, (5.3 ± 1.7) kJ mol−1) adjusted from DSC measurements at the melting temperature (1, (T fus, 357.7 K, 16.9 ± 1.3 kJ mol−1)); 2, (T fus, 383.3 K, 10.9 ± 0.1) kJ mol−1) with the vaporization enthalpies at T = 298.15 K (1, (116.1 ± 12.1); 2, (94.5 ± 2.2) kJ mol−1) measured by correlation-gas chromatography. The vaporization enthalpies of benzoin ((98.5 ± 12.5) kJ mol−1) and 7-heptadecanone ((94.5 ± 1.8) kJ mol−1) at T = 298.15 K and the fusion enthalpy of phenyl salicylate (T fus, 312.7 K, 18.4 ± 0.5) kJ mol−1) were also determined for the correlations. The crystal structure of 1 was determined by X-ray crystallography. Compound 1 exists entirely in the enol form and resembles the crystal structure found for benzoylacetone.  相似文献   

20.
Mixtures of chlorpheniramine maleate (CPM) and phenylpropanolamine hydrochloride (PPA), with and without pyrilamine maleate (PRM), are assayed by u.v. difference spectrophotometry without prior separation. The spectra for CPM and PRM in solutions at pH 1 and pH 6 show differences whereas the spectra for PPA remain the same at pH 1 and 6. For PPA, quantitation is based on the spectral change on oxidation to benzaldehyde with metaperiodate; this oxidation does not affect CPM and PRM. Calibration plots are linear for 6.7–99.9 μg ml?1 CPM (r = 0.9992), 12.7–50.6 μg ml?1 PRM (r = 0.9997) and 25–115.3 μg ml?1 PPA (r = 0.9980) in the presence of one another. Average recoveries (± RSD) from simulated PPA/CPM tablets were: PPA, 98.4 ± 0.4% (without PRM, n = 3), 99.8 ± 0.4% (with PRM, n = 5); CPM, 99.3 ± 0.6% (without PRM, n = 3), 99.2 ± 0.4% (with PRM, n = 5); and PRM, 99.5 ± 0.2% (in PPA/CPM/PRM tablets, n = 5). The method was successfully applied to commercial cold-allergy tablets containing these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号