首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transient photoluminescence of GaAs/AlGaAs quantum wires and quantum dots formed by strain confinement is studied as a function of temperature. At low temperature, luminescent decay times of the wires and dots correspond to the radiative decay times of localized excitons. The radiative decay time can be either longer or shorter than that of the host quantum well, depending on the size of the wires and dots. For small wires and dots (∼ 100 nm stressor), the exciton radiative recombination rate increases due to lateral confinement. Exciton localization due to the fluctuation of quantum well thickness plays an important role in the temperature dependence of luminescent decay time and exciton transfer in quantum wire and dot structures up to at least ∼ 80 K. Lateral exciton transfer in quantum wire and dot structures formed by laterally patterning quantum wells strongly affects the dynamics of wire and dot luminescence. The relaxation time of hot excitons increases with the depth of strain confinement, but we find no convincing evidence that it is significantly slower in quasi 1-D or 0-D systems than in quantum wells.  相似文献   

2.
GaAs/AlAs量子阱中受主束缚能和光致发光   总被引:1,自引:1,他引:0       下载免费PDF全文
从实验和理论上,研究了量子限制效应对GaAs/AlAs多量子阱中受主对重空穴束缚能的影响。实验中所用的样品是通过分子束外延生长的一系列GaAs/AlAs多量子阱,量子阱宽度为3~20nm,并且在量子阱中央进行了浅受主Be原子的δ-掺杂。在4,20,40,80,120K不同温度下,分别对上述样品进行了光致发光谱测量,观察到了受主束缚激子从基态到激发态的两空穴跃迁,并且从实验上测得了在不同量子阱宽度下受主的束缚能。理论上应用量子力学中的变分原理,数值计算了受主对重空穴束缚能随量子阱宽度的变化关系,比较发现,理论计算和实验结果符合地较好。  相似文献   

3.
We proposed a new model for controlling the optical bistability(OB) and optical multistability(OM) in a defect slab doped with four-level GaAs/AlGaAs multiple quantum wells with 15 periods of 17.5 nm GaAs wells and 15-nm Al_(0.3)Ga_(0.7)As barriers. The effects of biexciton energy renormalization, exciton spin relaxation, and thickness of the slab on the OB and OM properties of the defect slab were theoretically investigated. We found that the transition from OB to OM or vice versa is possible by adjusting the controllable parameters in a lab. Moreover, the transmission, reflection, and absorption properties of the weak probe light through the slab were also discussed in detail.  相似文献   

4.
The luminescence peak energy and tunneling lifetime of an exciton in a semiconductor quantum well with a small valence band offset in the presence of a perpendicular electric field is calculated by generalizing the variational approach of quantum confined Stark effect normally used for systems of GaAs/AlGaAs quantum wells. At a finite electric field, the electron-hole Coulomb interaction provides additional confinement to each of the carriers and significantly enhances the Stark shift and the exciton lifetime against field ionization. Numerical results are presented for ZnSe/Zn1−xMnxSe heterostructures studies in recent experiments.  相似文献   

5.
Processes occurring when a static transverse electric field is applied to a GaAs/AlGaAs n-i-n heterostructure with single quantum wells and asymmetric tunnel-coupled double quantum wells have been investigated by optical methods. The difference between the energies of exciton transitions for quantum wells of different widths makes it possible to attribute the observed photoluminescence peaks to particular pairs of wells or particular single quantum wells. The local electric field for each quantum well has been determined in terms of the Stark shift and splitting of exciton lines in a wide range of external voltage. A qualitative model has been proposed to explain the nonmonotonic distribution of the electric field over the depth of the heterostructure.  相似文献   

6.
We describe photoluminescence measurements made on mesa geometry quantum dots and wires with exposed side walls fabricated by laterally patterning undoped GaAs/AlGaAs quantum wells using electron beam lithography and dry etching. At low temperature the photoluminescence efficiency of many but not all of the GaAs quantum dot arrays scales with the volume of quantum well material down to lateral dimensions of 50nm. This behaviour contrasts with that found in wires produced at the same time where the intensity falls off rapidly with decreasing wire width for dimensions below 500nm but is recovered by overgrowth with indium tin oxide, possibly as a result of strain. Narrow overgrown wires exhibit anisotropy in polarized excitation spectra which is discussed in relation to strain and lateral confinement effects.  相似文献   

7.
Properties of excitons in vertically coupled GaAs/AlGaAs quantum dots were investigated using the variational method within the envelope function and effective mass approximations. It was found that when the thickness of the spacer layer becomes less than about one exciton Bohr radius, both the exciton binding energy and the fundamental optical transition energy are reduced compared to those in isolated quantum dots. This is a result of increased space extension of exciton due to the penetration of carrier wave functions into the spacer layer and corresponding reduction in confinement energy which dominates over the Coulomb interaction between the electron and the hole.  相似文献   

8.
Laser dependence of binding energy on exciton in a GaAs quantum well wire embedded on an AlGaAs wire within the single band effective mass approximation is investigated. Laser dressed donor binding energy is calculated as a function of wire radius with the renormalization of the semiconductor gap and conduction valence effective masses. We take into account the laser dressing effects on both the impurity Coulomb potential and the confinement potential. The valence-band anisotropy is included in our theoretical model by using different hole masses in different spatial directions. The spatial dielectric function and the polaronic effects have been employed in a GaAs/AlGaAs quantum wire. The numerical calculations reveal that the binding energy is found to increase with decrease with the wire radius, and decrease with increase with the value of laser field amplitude, the polaronic effect enhances the binding energy considerably and the binding energy of the impurity for the narrow well wire is more sensitive to the laser field amplitude.  相似文献   

9.
GaAs体材料及其量子阱的光学极化退相特性   总被引:1,自引:1,他引:1       下载免费PDF全文
采用飞秒时间分辨瞬态简并四波混频技术,在室温下测量了GaAs体材料及其量子阱材料GaAs/Al0.3Ga0.7As的光学极化超快退相时间,当激光中心波长为785nm,受激载流子浓度为1011cm-2时,它们的退相时间分别为28fs和46fs.量子阱材料的退相时间比体材料的长,这是由于量子阱中的载流子在垂直于GaAs/AlGaAs界面的运动受到限制,运动呈现二维特性,大大减小了载流子的散射概率.实验中观察到瞬态简并四波混 关键词: 时间分辨简并四波混频 飞秒激光脉冲 退相 密度矩阵  相似文献   

10.
A theoretical study of the intense high-frequency laser field effect on the interband transitions and on the ground (1S-like) and excited (2S-like) exciton states in InGaAs/GaAs near-surface quantum wells is performed within the effective mass approximation. The carrier confinement potentials and image charge contributions to the Coulomb interaction can significantly be modified and controlled by the capped layer thickness and laser field intensity. We found that: (i) the interband and exciton transition energies monotonically enhance with the laser amplitude; (ii) for small capped layers the splitting between the 2S and 1S exciton lines are more sensitive to the dressing laser parameter, and (iii) for high enough laser intensities the dressing effects on both confining potential and Coulomb interactions can yield entirely different exciton emission spectra depending on the cap layer thickness. Our results are compared with the theoretical and experimental data obtained in the absence of the laser field and a good agreement is reached.  相似文献   

11.
The exciton wavefunction in parabolic quantum wells is calculated using variational techniques and effective mass theory. The influences of the potential shape and of confinement on the exciton binding energies are studied. The results are in good agreement with previous calculations. The oscillator-strength of excitons in GaAs/Ga1-xAlxAS quantum wells has a maximum value very close to the cross-over from three to two dimensions.  相似文献   

12.
We present systematic studies of the temperature dependence of linewidths and lifetimes of excitonic transitions in quantum wells grown by molecular beam epitaxy using both photoluminescence(PL) and optical absorption. The temperature ranged from 6K to room temperature. Samples under investigation were lattice-matched GaAs/AlGaAs and InGaAs/InAlAs, and strained InGaAs/GaAs and InGaAs/AlGaAs quantum wellssystems. In addition, the effects of well-size variations in GaAs/AlGaAs quantum wells were measured and analyzed. In all cases we were able to observe the excitonic transitions up to room temperature. By a careful fitting of the experimental data we separated the exciton transitions from band-to-band transitions. By deconvoluting the excitonic transitions we obtained the homogeneous and inhomogeneous linewidths. The homogeneous linewidths were used to calculate the exciton lifetimes as a function of temperature using the Heisenberg uncertainty principle. We found the lifetime decreases significantly with temperature and increases with increasing well size. These results are interpreted in terms of the exciton-phonon interaction and are expected to be very useful for the design of semiconductor optical devices operating at different temperatures.  相似文献   

13.
利用MOCVD技术在GaAs衬底上外延生长了非对称量子阱结构CdSe/ZnSe材料,通过对其稳态变温光谱及变激发功率光谱,研究了其发光特性。稳态光谱表明:在82~141K时,观测到的两个发光峰来源于不同阱层厚度的量子阱激子发光,用对比实验验证了高能侧发光的来源。宽阱发光强度先增加后减小,将其归结为激子隧穿与激子热离化相互竞争的结果。通过Arrhenius拟合,对宽阱激子热激活能进行了计算。82K时变激发功率PL光谱表明:由于激子隧穿的存在,使得窄阱发光峰位不随激发功率变化而变化,宽阱发光峰位随激发功率增加发生了蓝移,并对激子隧穿进行了实验验证。  相似文献   

14.
A theoretical and experimental study of the exciton in ultra-narrow quantum wells (QWs) is performed. A crossover from strong (separate localization of electron and hole levels) to weak confinement (with localization of excitonic center of mass) is predicted to occur for decreasing thickness, and is characterized by a minimum of the oscillator strength per unit area. Cathodoluminescence measurements performed on a series of GaAs/Al0.35Ga0.65As QWs with thicknesses from one to eight monolayers show a minimum of the oscillator strength, in agreement with theory, and indicate that the crossover from strong to weak confinement occurs at a thickness of about three monolayers for this composition.  相似文献   

15.
A series of GaAs/AlAs multiple-quantum wells doped with Be is grown by molecular beam epitaxy. The photoluminescence spectra are measured at 4, 20, 40, 80, 120, and 200 K, respectively. The recombination transition emission of heavy-hole and light-hole free excitons is clearly observed and the transition energies are measured with different quantum well widths. In addition, a theoretical model of excitonic states in the quantum wells is used, in which the symmetry of the component of the exciton wave function representing the relative motion is allowed to vary between the two- and threedimensional limits. Then, within the effective mass and envelope function approximation, the recombination transition energies of the heavy- and light-hole excitons in GaAs/AlAs multiple-quantum wells are calculated each as a function of quantum well width by the shooting method and variational principle with two variational parameters. The results show that the excitons are neither 2D nor 3D like, but are in between in character and that the theoretical calculation is in good agreement with the experimental results.  相似文献   

16.
We report the first studies of exciton luminescence spectra from asymmetric double quantum wells (DQWs) of very similar width. The DQWs were of GaAs/AlGaAs and the differences in widths of the coupled wells were one or two monolayers. The coupled direct and indirect exciton states anticross with a resonance splitting of 1.33 meV. An additional luminescence line appearing at low temperatures is identified as a localized indirect exciton. Fiz. Tverd. Tela (St. Petersburg) 39, 735–739 (April 1997)  相似文献   

17.
We present a study of GaInP/GaAs interfaces by means of photoluminescence (PL) of multi quantum wells (MQW), embedded in GaInP, or asymmetric structures having an AlGaAs barrier GaInP/GaAs/AlGaAs. The PL energies of quantum wells were compared with calculations based on the transfer matrix envelope function approximation, well suited for asymmetric structures. GaInP/GaAs/AlGaAs MQW structures (GaInP grown first) are in reasonably good agreement with calculations. Reverse ones, AlGaAs/GaAs/GaInP, present a lower PL energy than calculated. But the agreement with theory is recovered on single quantum well samples, or in MQW when the GaInP thickness is increased up to 100 nm. We interpret this phenomenon as a diffusion of arsenic atoms from the next GaAs well through the GaInP barrier. Arsenic atoms exchange with phosphorus atoms at the GaInP-on-GaAs interface of the former well, leading to a small gap strained InGaAs region responsible for the lowering of PL energies.  相似文献   

18.
The photoluminescence linewidths and excition lifetimes of free excitons in GaAs/AlGaAs multiple quantum wells were systematically investigated as a function of temperature, quantum well width, and carrier density. The experimental results showed that the exciton decay processes were strongly related to the linewidth of the exciton and the exciton binding energy.  相似文献   

19.
In this paper we investigate the effects of quantum well size changes on slow light device properties. The principle properties such as center frequency and slow down factor of a slow light device are affected by changing the size of quantum well. In this way, the effects of quantum well size on Oscillator Strength and binding energy of exciton are considered separately. First, we investigate the variations in oscillator strength of exciton due to different quantum well size. Second, exciton binding energy level shift due to size of quantum well is investigated. According to this analysis, we have developed a new method for tuning slow light device bandwidth center frequency and slow down factor. Analysis and simulation of a basic GaAs/AlGaAs quantum wells optical slow light device based on excitonic population oscillation shows that size of quantum wells could tune both of the frequency properties and slow down factor of an optical slow light device. Simulation results show that slow down factor and oscillation strength of exciton are proportional to each other in direct manner. Moreover, decreasing the quantum well width, causes enhancement in binding energy of excitons. These achievements are useful in optical nonlinearity enhancements, all-optical signal processing applications and optical communications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号