首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sub-picosecond laser pulse driven localization of electronic excitation energy is suggested for a biological chromophore complex. Based on an exciton model of the photosynthetic core antenna PS1 of Synechococcus elongatus the shape of the respective laser pulse is calculated using optimal control theory combined with a density matrix theory accounting for energy relaxation and dephasing caused by the protein environment. As a target observable we choose the population oscillation after photo-excitation between the two Chlorophylls forming the special pair. The temperature dependence of the related control yield is studied as well as its dependence on the pulses duration.  相似文献   

2.
Femtosecond laser pulse control of exciton dynamics in biological chromophore complexes is studied theoretically using the optimal control theory specified to open quantum systems. Based on the laser pulse induced formation of an excitonic wave packet the possibility to localize excitation energy at a certain chromophore within a photosynthetic antenna system (FMO complex of green bacteria) is investigated both for linearly polarized and polarization shaped pulses. Results are presented for an ensemble of N energetically disordered and randomly oriented FMO complexes. Here, the optimized control pulse represents a compromise with respect to the solution of the control task for any individual complex of the ensemble. For the case of an ensemble with N=10 members the polarization shaped control pulse leads to a higher control yield compared with a linearly polarized pulse. This difference becomes considerably smaller for an ensemble with N=120 members. The respective optimized pulses are used to drive excitation energy in a different ensemble with MN complexes to simulate the usual experimental condition in solution. For the case with N=120, the relative control yield coincides with the resulting control yield “in solution”, giving a slightly higher control yield for polarization shaped pulses.  相似文献   

3.
4.
The cation of 2-phenylethyl-N,N-dimethylamine (PENNA) offers two local sites for the charge: the amine group and 0.7 eV higher in energy the phenyl chromophore. In this paper, we investigate the dynamics of the charge transfer (CT) from the phenyl to the amine site. We present a femtosecond resonant two-color photoionization spectrum which shows that the femtosecond pump laser pulse is resonant in the phenyl chromophore. As shown previously with resonant wavelengths the aromatic phenyl chromophore can be then selectively ionized. Because the state "charge in the phenyl chromophore" is the first excited state in the PENNA cation, it can relax to the lower-energetic state "charge in the amine site". To follow this CT dynamics, femtosecond probe photoabsorption of green light (vis) is used. The vis light is absorbed by the charged phenyl chromophore, but not by the neutral phenyl and the neutral or cationic amine group. Thus, the absorption of vis photons of the probe laser pulse is switched off by the CT process. For detection of the resonant absorption of two or more vis photons in the cation the intensity of a fragmentation channel is monitored which opens only at high internal energy. The CT dynamics in PENNA cations has a time constant of 80 +/- 28 fs and is therefore not a purely electronic process. Because of its structural similarity to phenylalanine, PENNA is a model system for a downhill charge transfer in peptide cations.  相似文献   

5.
The electronic excitation population and coherence dynamics in the chromophores of the photosynthetic light harvesting complex 2 (LH2) B850 ring from purple bacteria (Rhodopseudomonas acidophila) have been studied theoretically at both physiological and cryogenic temperatures. Similar to the well-studied Fenna-Matthews-Olson (FMO) protein, oscillations of the excitation population and coherence in the site basis are observed in LH2 by using a scaled hierarchical equation of motion approach. However, this oscillation time (300 fs) is much shorter compared to the FMO protein (650 fs) at cryogenic temperature. Both environment and high temperature are found to enhance the propagation speed of the exciton wave packet yet they shorten the coherence time and suppress the oscillation amplitude of coherence and the population. Our calculations show that a long-lived coherence between chromophore electronic excited states can exist in such a noisy biological environment.  相似文献   

6.
Synthetic DNA conjugates in which one or both ends of a short duplex is capped by a stilbene chromophore have been prepared and characterized crystallographically. Selective excitation of the chromophore can be used to initiate electron transfer processes in which a nucleobase serves as either an electron donor or an electron acceptor. These processes include hole- and electron injection and hole migration. The dynamics of these processes and its dependence on distance, driving force, and base sequence have been investigated by means of femtosecond time-resolved spectroscopy. Duplexes with identical chromophores at both ends have been used to study both the dynamics of electron transfer processes and exciton coupling between the two chromophores by means of circular dichroism spectroscopy. Duplexes with different chromophores can also be used to study distance dependence of both electron transfer and exciton coupling.  相似文献   

7.
通过求解D2分子在飞秒激光场中的含时薛定谔方程,研究了室温下D2分子在超快1s秒激光驱动下的的转动波包动力学.选择用第一束超短飞秒脉冲与温度为300K的D2分子系综相互作用产生一个相干转动波包,用第二束超短匕秒脉冲在波包的1/4和3/4恢复周期选择操纵D2分子取向.研究结果表明,通过选择两束超短飞秒脉冲的延迟时间,可以有效控制D2分子转动波包中奇偶态的相对布居,从而选择性的控制D2分子取向.  相似文献   

8.
A high-dimensional quantum wave packet approach based on Gaussian wave packets in Cartesian coordinates is presented. In this method, the high-dimensional wave packet is expressed as a product of time-dependent complex Gaussian functions, which describe the motion of individual atoms. It is applied to the ultrafast geometrical rearrangement dynamics of NO doped cryogenic Ne matrices after femtosecond laser pulse excitation. The static deformation of the solid due to the impurity as well as the dynamical response after femtosecond excitation are analyzed and compared to reduced dimensionality studies. The advantages and limitations of this method are analyzed in the perspective of future applications to other quantum solids.  相似文献   

9.
10.
The paper presents a time-resolved study of rapid exciton migration in polyethylene (PE) by means of pulse radiolysis and laser photolysis experiments. Despite the high viscosity of molten PE blended with substances such as a phenol, diphenylamine or benzophenone the most important part of the radiation-generated scavenger radicals is formed in times <40 ns. By comparison with laser photolysis experiments with molten PE and liquid-state pulse radiolysis in alkanes the rapid radical formation is explained in terms of the intramolecular exciton migration with subsequent dissociative transfer to the additive.  相似文献   

11.
We report the time-resolved recombination of photodissociated IBr-(CO2)n (n = 5-10) clusters following excitation to the dissociative IBr-A' 2Pi12 state of the chromophore via a 180 fs, 795 nm laser pulse. Dissociation from the A' state of the bare anion results in I- and Br products. Upon solvation with CO2, the IBr- chromophore regains near-IR absorption only after recombination and vibrational relaxation on the ground electronic state. The recombination time was determined by using a delayed femtosecond probe laser, at the same wavelength as the pump, and detecting ionic photoproducts of the recombined IBr- cluster ions. In sharp contrast to previous studies involving solvated I2-, the observed recombination times for IBr-(CO2)n increase dramatically with increasing cluster size, from 12 ps for n = 5 to 900 ps for n = 8,10. The nanosecond recombination times are especially surprising in that the overall recombination probability for these cluster ions is unity. Over the range of 5-10 solvent molecules, calculations show that the solvent is very asymmetrically distributed, localized around the Br end of the IBr- chromophore. It is proposed that this asymmetric solvation delays the recombination of the dissociating IBr-, in part through a solvent-induced well in the A' state that (for n = 8,10) traps the evolving complex. Extensive electronic structure calculations and nonadiabatic molecular dynamics simulations provide a framework to understand this unexpected behavior.  相似文献   

12.
In this Article, we show that the aromaticity of a molecule can be turned off by controlling the electron dynamics. We present a controlled switching from the aromatic ground state of benzene to two different nonaromatic states, using a laser pulse. The propagation of the molecular wave function is carried out with the time-dependent configuration interaction method. The laser pulse for switching between the ground and excited states is optimized using optimal control theory. Bond orders and Mulliken charges serve as an aromaticity criterion. The nonaromatic target states exhibit localized bonds and partial charges on the carbon atoms; these localized electrons circulate on an attosecond time scale in the ring system.  相似文献   

13.
A laser scheme using a periodically changing frequency is used to induce oscillations of the internuclear motion, which are quantum analogs of classical vibrations in diatomic molecules. This is what we call the periodic laser adiabatic manipulation of the bond, or p-LAMB scheme. In p-LAMB, the carrier frequency of the laser must vary periodically from the blue to the red of a photodissociation band and backwards, following for instance a cosine-dependent frequency of period τ(c). In the adiabatic regime the dynamics is fully time-reversible. The amplitude of the internuclear oscillation is controlled by the pulse frequency ω(t), while τ(c) determines the duration (or period) of the bond oscillation. In the presence of efficient dipole coupling, the bandwidth of the pulse is the main constraint to the maximum bond stretch that can be obtained. Before the onset of the adiabatic regime the dynamics are more complex, showing dispersion of the vibrational wave packet and anharmonic deformation of the bond. However, the nonadiabatic effects are mostly canceled and full revivals are observed at certain multiples of τ(c).  相似文献   

14.
We investigate theory of single-photon control from a two-level single-molecule source irradiated by laser pulses of various shapes and pulse durations in terms of quantum trajectories which link stochastic dynamics of the radiating source with quantum measurement theory. Using Monte Carlo wave function simulation, we analyze the detailed dissipative dynamics of the single-molecule source and the photon statistics as revealed by repeated Gedanken photon measurement on the single radiating source. We show that much of the photon statistics from the two-level single-molecule single-photon sources, including few-photon emission probability, waiting time distribution, and two-time correlation function of the fluorescent light, can be understood qualitatively from the simple picture of Rabi nutation and pi pulse in terms of pulse areas.  相似文献   

15.
The ultrafast geometrical rearrangement dynamics of NO doped cryogenic Ne matrices after femtosecond laser pulse excitation is studied using a quantum dynamical approach based on a multi-dimensional shell model, with the shell radii being the dynamical variables. The Ne-NO interaction being only weakly anisotropic allows the model to account for the main dynamical features of the rare gas solid. Employing quantum wave packet propagation within the time dependent Hartree approximation, both, the static deformation of the solid due to the impurity and the dynamical response after femtosecond excitation, are analysed. The photoinduced dynamics of the surrounding rare gas atoms is found to be a complex high-dimensional process. The approach allows to consider realistic time-dependent femtosecond pulses and the effect of the pulse duration is clearly shown. Finally, using the pulse parameters of previous experiments, pump-probe signals are calculated and found to be in good agreement with experimental results, allowing for a clear analysis of the ultrafast mechanism of the energy transfer into the solid.  相似文献   

16.
The exciton dynamics of model aggregate systems, dimer, trimer, and pentamer, composed of two-state monomers is computationally investigated in the presence of three types of quantized optical fields, i.e., coherent, amplitude-squeezed, and phase-squeezed fields, in comparison with the case of classical laser fields. The constituent monomers are assumed to interact with each other by the dipole-dipole interaction, and the two-exciton model, which takes into account both the one- and two-exciton generations, is employed. As shown in previous studies, near-degenerate exciton states in the presence of a (near) resonant classical laser field create quantum superposition states and thus cause the spatial exciton recurrence motion after cutting the applied field. In contrast, continuously applied quantized optical fields turn out to induce similar exciton recurrence motions in the quiescent region between the collapse and revival behaviors of Rabi oscillation. The spatial features of exciton recurrence motions are shown to depend on the architecture of aggregates. It is also found that the coherent and amplitude-squeezed fields tend to induce longer-term exciton recurrence behavior than the phase-squeezed field. These features have a possibility for opening up a novel creation and control scheme of exciton recurrence motions in aggregate systems under the quantized optical fields.  相似文献   

17.
18.
An effective scheme is proposed for the laser control of wave packet dynamics. It is demonstrated that by using specially designed quadratically chirped pulses, fast and nearly complete excitation of wave packet can be achieved without significant distortion of its shape. The parameters of the laser pulse can be estimated analytically from the Zhu-Nakamura theory of nonadiabatic transition. If the wave packet is not too narrow or not too broad, then the scheme is expected to be utilizable for multidimensional systems. The scheme is applicable to various processes such as simple electronic excitation, pump-dump, and selective bond breaking, and it is actually numerically demonstrated to work well by taking diatomic and triatomic molecules (LiH, NaK, H(2)O) as examples.  相似文献   

19.
The linear absorbance of a particular chromophore complex P(4) dissolved in ethanol is computed. P(4) is formed by a butanediamine dendrimer to which four pheophorbide-a molecules are covalently linked. The computations utilize a mixed quantum classical methodology and different approximations are compared. The electronic states of the P(4) chromophores which form Frenkel excitons in the excited states are treated quantum mechanically, whereas the intramolecular, intermolecular, as well as solvent coordinates are described classically. The computations use an improved exciton model, where the charge and transition densities of the chromophores are described by atomic partial charges, derived from a fit of the respective ab initio electrostatic potentials. Room temperature molecular dynamics simulations of all nuclear coordinates result in a time-dependent exciton model. It includes modulations of chromophore excitation energies due to charge density coupling between all chromophores as well as between the chromophores and solvent molecules, and, finally, modulations of the interchromophore excitonic couplings. The different approximations to the absorbance agree rather well. In particular, they confirm the reliability of adiabatic excitonic states which energies and oscillator strengths are altered by the overall temporal evolution of P(4) conformations. The fluctuations of solute-solvent interactions have a significantly larger effect on the absorbance broadening than the excitonic couplings but cannot completely explain the measured spectrum. The additional account for intrachromophore vibrations overcomes this discrepancy.  相似文献   

20.
Population transfers in degenerate (or almost degenerate) two-level systems interacting with the few-cycle laser pulse are investigated. A simple and analytical formula of nonadiabatic transition probability is derived with completely degenerate condition, demonstrating the sensitive dependence of the transition probability on the phase of the few-cycle pulses. As one of the applications of this formula, a new way of controlling the nuclear wave packet dynamics at a potential curve crossing by 1 cycle laser pulse is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号