首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider the solidification of a binary alloy in a mushy layer subject to Coriolis effects. A near-eutectic approximation and large far-field temperature is employed in order to study the dynamics of the mushy layer with a Stefan number of unit order of magnitude. The weak nonlinear theory is used to investigate analytically the Coriolis effect in a rotating mushy layer for a new moderate time scale proposed by the author. It is found that increasing the Taylor number favoured the forward bifurcation.  相似文献   

2.
The effect of rotation and anisotropy on the onset of double diffusive convection in a horizontal porous layer is investigated using a linear theory and a weak nonlinear theory. The linear theory is based on the usual normal mode technique and the nonlinear theory on the truncated Fourier series analysis. Darcy model extended to include time derivative and Coriolis terms with anisotropic permeability is used to describe the flow through porous media. The effect of rotation, mechanical and thermal anisotropy parameters, and the Prandtl number on the stationary and overstable convection is discussed. It is found that the effect of mechanical anisotropy is to allow the onset of oscillatory convection instead of stationary. It is also found that the existence of overstable motions in case of rotating porous medium is not restricted to a particular range of Prandtl number as compared to the pure viscous fluid case. The finite amplitude analysis is performed to find the thermal and solute Nusselt numbers. The effect of various parameters on heat and mass transfer is also investigated.  相似文献   

3.
The Coriolis effect on a solidifying mushy layer is considered. A near-eutectic approximation and large far-field temperature is employed in the current study for large Stefan numbers. The linear stability theory is used to investigate analytically the Coriolis effect on convection in a rotating mushy layer for a new formulation of the Darcy equation. It was found that a large Stefan number scaling allows for the presence of both the stationary and oscillatory modes of convection. In contrast to the problem of a stationary mushy layer, rotating the mushy layer has a stabilising effect on convection. It was observed that increasing the Taylor number or the Stefan number encouraged the oscillatory mode of convection.  相似文献   

4.
We investigate the steady state convection amplitude for solutal convection occurring during the solidification of a rotating mushy layer in a binary alloy system for a new Darcy equation formulation. We adopt a large far field temperature and assume that the initial composition is very close to the eutectic composition. The linear stability analysis showed that rotation stabilised solutal convection. The results of the weak non-linear analysis of stationary convection indicates the presence of Hopf bifurcation, associated with the oscillatory mode, developing at Ta = 3.  相似文献   

5.
We consider the effects of rotation in a porous layer heated from below and subjected to a variable gravity field. The study is presented for large Vadasz numbers where no oscillatory convection is possible. It is demonstrated that the Coriolis acceleration stabilizes the convection in a variable gravity field, whilst the effect of gravity parameter stabilses the convection when reduced and destabilizes the convection when increased.  相似文献   

6.
The linear stability theory is used to investigate analytically the Coriolis effect on centrifugally driven convection in a rotating porous layer. The problem corresponding to a layer placed far away from the axis of rotation was identified as a distinct case and therefore justifying special attention. The stability of the basic centrifugally driven convection is analysed. The marginal stability criterion is established as a characteristic centrifugal Rayleigh number in terms of the wavenumber and the Taylor number.  相似文献   

7.
The effect of rotation on the onset of double diffusive convection in a sparsely packed anisotropic porous layer, which is heated and salted from below, is investigated analytically using the linear and nonlinear theories. The Brinkman model that includes the Coriolis term is employed for the momentum equation. The critical Rayleigh number, wavenumber for stationary and oscillatory modes and a dispersion relation are obtained analytically using linear theory. The effect of anisotropy parameters, Taylor number, Darcy number, solute Rayleigh number, Lewis number, Darcy–Prandtl number, and normalized porosity on the stationary, oscillatory and finite amplitude convection is shown graphically. It is found that contrary to its usual influence on the onset of convection in the absence of rotation, the mechanical anisotropy parameter show contrasting effect on the onset criterion at moderate and high rotation rates. The nonlinear theory based on the truncated representation of Fourier series method is used to find the heat and mass transfers. The effect of various parameters on heat and mass transfer is shown graphically. Some of the convection systems previously reported in the literature is shown to be special cases of the system presented in this study.  相似文献   

8.
康建宏  谭文长 《力学学报》2018,50(6):1436-1457
基于修正的Darcy模型, 介绍了多孔介质内黏弹性流体热对流稳定性研究的现状和主要进展. 通过线性稳定性理论, 分析计算多孔介质几何形状(水平多孔介质层、多孔圆柱以及多孔方腔)、热边界条件(底部等温加热、底部等热流加热、底部对流换热以及顶部自由开口边界)、黏弹性流体的流动模型(Darcy-Jeffrey, Darcy-Brinkman-Oldroyd以及Darcy-Brinkman -Maxwell模型)、局部热非平衡效应以及旋转效应对黏弹性流体热对流失稳的临界Rayleigh数的影响. 利用弱非线性分析方法, 揭示失稳临界点附近热对流流动的分叉情况, 以及失稳临界点附近黏弹性流体换热Nusselt数的解析表达式. 采用数值模拟方法, 研究高Rayleigh数下黏弹性流体换热Nusselt数和流场的演化规律,分析各参数对黏弹性流体热对流失稳和对流换热速率的影响.主要结果:(1)流体的黏弹性能够促进振荡对流的发生;(2)旋转效应、流体与多孔介质间的传热能够抑制黏弹性流体的热对流失稳;(3)在临界Rayleigh数附近,静态对流分叉解是超临界稳定的, 而振荡对流分叉可能是超临界或者亚临界的,主要取决于流体的黏弹性参数、Prandtl数以及Darcy数;(4)随着Rayleigh数的增加,热对流的流场从单个涡胞逐渐演化为多个不规则单元涡胞, 最后发展为混沌状态.   相似文献   

9.
In this article, linear and nonlinear thermal instability in a rotating anisotropic porous layer with heat source has been investigated. The extended Darcy model, which includes the time derivative and Coriolis term has been employed in the momentum equation. The linear theory has been performed by using normal mode technique, while nonlinear analysis is based on minimal representation of the truncated Fourier series having only two terms. The criteria for both stationary and oscillatory convection is derived analytically. The rotation inhibits the onset of convection in both stationary and oscillatory modes. Effects of parameters on critical Rayleigh number has also been investigated. A weak nonlinear analysis based on the truncated representation of Fourier series method has been used to find the Nusselt number. The transient behavior of the Nusselt number has also been investigated by solving the finite amplitude equations using a numerical method. Steady and unsteady streamlines, and isotherms have been drawn to determine the nature of flow pattern. The results obtained during the analysis have been presented graphically.  相似文献   

10.
We consider the effects of rotation in a mushy layer being cast from a vertical surface where the effects of Coriolis acceleration, gravity and centrifugal effects are included. It is demonstrated that the Coriolis acceleration and gravity play a passive role in convection and are excluded from the stability criteria. The stability criteria is presented as the critical centrifugal Rayleigh numbers referenced for locations far away (start of solidification) and close to (nearing end of solidification) the axis or rotation.  相似文献   

11.
A numerical study of the heat and mass transfer from an evaporating fuel droplet in oscillatory flow was performed. The flow was assumed to be laminar and axisymmetric, and the droplet was assumed to maintain its spherical shape during its lifetime. Based on these assumptions, the conservation equations in a general curvilinear coordinate were solved numerically. The behaviors of droplet evaporation in the oscillatory flow were investigated by analyzing the effects of flow oscillation on the evaporation process of a n-heptane fuel droplet at high pressure.The response of the time history of the square of droplet diameter and space-averaged Nusselt numbers to the main flow oscillation were investigated in frequency band of 1–75 Hz with various oscillation amplitudes. Results showed that, depending on the frequency and amplitude of the oscillation, there are different modes of response of the evaporation process to the flow oscillation. One response mode is synchronous with the main flow oscillation, and thus the quasi-steady condition is attained. Another mode is asynchronous with the flow oscillation and is highly unsteady. As for the evaporation rate, however, in all conditions is more greatly enhanced in oscillatory flow than in quiescent air.To quantify the conditions of the transition from quasi-steady to unsteady, the response of the boundary layer around the droplet surface to the flow oscillation was investigated. The results led to including the oscillation Strouhal number as a criteria for the transition. The numerical results showed that at a low Strouhal number, a quasi-steady boundary layer is formed in response to the flow oscillation, whereas by increasing the oscillation Strouhal number, the phenomena become unsteady.  相似文献   

12.
Inertial waves are oscillations in a rotating fluid that arise due to the restoring action of the Coriolis force. Low-frequency inertial waves are known to create columnar flow structures inrapidly rotating systems. Columnar heat transport away from the equator has been observed in some strongly forced, rapidly-rotating geodynamo simulations of the Earth’s core. In this study, we investigate the mechanism governing this heat transport by performing direct numerical simulations of model problems comprising buoyant blobs under rapid rotation in a periodic box. We consider a wide range of Rossby numbers (Ro), the ratio of advection to Coriolis force, and Peclet numbers (Pe), the ratio of thermal advection to thermal diffusion. Columnar flow structures, that comprise inertial wave packets, are observed to emerge from the buoyant regions and travel towards the box boundary. We find that the columnar heat transport occurs by advection governed by the local Pe (for instance, a larger vertical elongation in the blob is observed for larger Pe at the same Ro). The magnitude of the advection velocity is determined by the balance between the buoyancy and Coriolis forces. Moreover, the direction of advection is determined by the direction of the wave-induced flow in the columns above and below the blob. Our results suggest that the local Pe could be important for the columnar heat transport in strongly forced dynamo simulations.  相似文献   

13.
The nonlinear stability of thermal convection in a layer of an Oldroyd-B fluid-saturated Darcy porous medium with anisotropic permeability and thermal diffusivity is investigated with the perturbation method. A modified Darcy-Oldroyd model is used to describe the flow in a layer of an anisotropic porous medium. The results of the linear instability theory are delineated. The thresholds for the stationary and oscillatory convection boundaries are established, and the crossover boundary between them is demarcated by identifying a codimension-two point in the viscoelastic parameter plane. The stability of the stationary and oscillatory bifurcating solutions is analyzed by deriving the cubic Landau equations. It shows that these solutions always bifurcate supercritically. The heat transfer is estimated in terms of the Nusselt number for the stationary and oscillatory modes. The result shows that, when the ratio of the thermal to mechanical anisotropy parameters increases, the heat transfer decreases.  相似文献   

14.
Linear stability analysis of thermal convection is studied for a viscoelastic fluid in a rotating porous cylindrical annulus. The modified Darcy–Jeffrey model with the addition of the Coriolis term in a rotating frame of reference is applied to characterize the non-Newtonian rheology in porous media. We investigate how the interaction among the Coriolis force, viscoelasticity, and bounded sidewalls affects the preferred mode at the onset of convection. The results show that for a slowly rotating case, the oscillatory mode is always preferred for any considered cylindrical radii. However, for a moderately rotating case, the oscillatory preferred mode only arises intermittently as the outer cylindrical radius gradually increases. This result is quite different from the case for viscoelastic fluids in a rotating porous layer or in a porous cylinder without rotation. Further, we discover that for a pair of given cylindrical radii when the Taylor number exceeds a critical value depending on the viscoelastic parameters, the oscillatory convection does not occur. We also examine how the variations of the Taylor number and the viscoelastic parameters affect the patterns of temperature disturbance at the onset of convection.  相似文献   

15.
Linear and non-linear thermal instability in a rotating anisotropic porous medium, saturated with viscoelastic fluid, has been investigated for free-free surfaces. The linear theory is being related to the normal mode method and non-linear analysis is based on minimal representation of the truncated Fourier series analysis containing only two terms. The extended Darcy model, which includes the time derivative and Coriolis terms has been employed in the momentum equation. The criteria for both stationary and oscillatory convection is derived analytically. The rotation inhibits the onset of convection in both stationary and oscillatory modes. A weak non-linear theory based on the truncated representation of Fourier series method is used to find the thermal Nusselt number. The transient behaviour of the Nusselt number is also investigated by solving the finite amplitude equations using a numerical method. The results obtained during the analysis have been presented graphically.  相似文献   

16.
The linear stability theory is used to investigate analytically the effects of Coriolis acceleration on gravity driven convection in a rotating porous layer. The stability of a basic solution is analysed with respect to the onset of stationary convection. It was discovered that increasing the Taylor number caused degeneracy to polyhedric cells for a specific range of inclination angles. The effects of the magnitude of the horizontal wavenumber is discussed in relation to the magnitude of the Taylor number.  相似文献   

17.
The onset of thermal convection in an isothermally heated, horizontal porous layer saturated with viscoelastic liquid was analyzed analytically under the linear theory. An existing constitutive model, which is rather simple, was employed to examine the effects of relaxation times. It is shown clearly that oscillatory instabilities can set in before stationary modes are exhibited. The peculiar behavior of the frequency at the critical state was discussed in connection to polymeric liquids.  相似文献   

18.
The detailed processes of flow reversal in a buoyancy-induced flow through a one-side-heated vertical channel of finite height were simulated numerically. It is of interest to note that the wake above the heated plate is oscillatory at high Rayleigh number and there exists a minimum in the transient variation of the average Nusselt number. Additionally, the predicted steady average Nusselt number and induced flow rate are correlated by empirical equations.  相似文献   

19.
The linear stability of a viscoelastic liquid saturated horizontal anisotropic porous layer heated from below and cooled from above is investigated by considering the Oldroyd type liquid. A generalized Darcy model, which takes into account the viscoelastic properties, the mechanical and thermal anisotropy is employed as momentum equation. The critical Rayleigh number, wavenumber, for stationary and oscillatory states and frequency of oscillation are determined analytically. It is shown that oscillatory instabilities can set in before stationary modes are exhibited. The effect of the viscoelastic parameter, the mechanical and thermal anisotropy parameters and specific heat ratio on the linear stability of the system is analyzed and presented graphically.  相似文献   

20.
The modelling of viscous dissipation in a porous medium saturated by an incompressible fluid is discussed, for the case of Darcy, Forchheimer and Brinkman models. An apparent paradox relating to the effect of inertial effects on viscous dissipation is resolved, and some wider aspects of resistance to flow (concerning quadratic drag and cubic drag) in a porous medium are discussed. Criteria are given for the importance or otherwise of viscous dissipation in various situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号