首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic attraction: The cubic perovskite BaFeO(3) (see picture, Ba?blue, Fe?brown, O?white), which is obtained by a low-temperature reaction using ozone as an oxidant, exhibits ferromagnetism with a fairly large moment of 3.5?μ(B) per Fe ion above a small critical field of approximately 0.3?T. This specific ferromagnetism is attributed to the enhancement of O→Fe charge transfer that arises from deepening of the Fe(4+) d levels.  相似文献   

2.
3.
4.
Resistance measurements indicate the presence of magnetoresistance in the La0.5Sr0.5MnO2.5 brownmillerite related compound. An 80 % of magnetoresistance is found at 75 K. In spite of the partial break‐up occurring at the 3D network of octahedra sharing corners, characteristic of the full oxygen content perovskite phase, the oxygen deficient compound exhibits complex magnetic and electric properties. Such behavior can be explained on the basis of ferromagnetic and metallic clusters randomly distributed at the octahedral layers separated from each other by an insulating antiferromagnetic matrix. AC susceptibility measurements suggest spin glass behavior at low temperature as a consequence of the competition between different magnetic interactions.  相似文献   

5.
Li-O2 batteries (LOBs) with an extremely high theoretical energy density have been reported to be the most promising candidates for future electric storage systems. Porous catalysts can be beneficial for LOBs. Herein, 3D-ordered macroporous La0.6Sr0.4Co0.2Fe0.8O3 perovskite oxides (3D-LSCF) are applied as cathode catalysts in LOBs. With a high Brunauer-Emmett-Teller surface area (21.8 m2 g−1) and unique honeycomb-like macroporous structure, the 3D-LSCF catalysts possess a much higher efficiency than La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) nanoparticles. The unique 3D-ordered macropores play a significant role in the product deposition as well as oxygen and electrolyte transmission, which are crucial for the discharge-charge processes of LOBs.  相似文献   

6.
7.
Two new oxides of the Ruddlesden-Popper series have been isolated and structurally characterized in the Sr-Co-Ta-O system. X-ray and electron diffraction and high-resolution electron microscopy show that polycrystalline Sr(3)CoTaO(7) constitutes the n=2 member of a new Sr(n+1)(CoTa)(n)O(3n+1) homologous series, the essential feature of which is the existence of two connected Co/Ta octahedral layers, separated by Sr atoms. Sr(2)CoTaO(6), the n=infinity member of the series, shows a particular short-range ordering of Co and Ta at the octahedral sites leading, as shown by high-resolution electron microscopy, to the disordered intergrowth of simple and double perovskite type domains. Strategies to stabilize new oxides of this series are discussed.  相似文献   

8.
About a New Oxohalogenoferrite: Sr3Fe2O5Cl2 The preparation and single crystal X-ray investigation of Sr3Fe2O5Cl2 are described. This compound belongs to the Sr3Ti2O7 structure with a = 3.942(2) and c = 23.786(12) Å; space group D?I4/mmm. Sr3Fe2O5Cl2 shows an one-sided streched FeO5Cl octahedron in respect to the Fe? Cl distances. This particularity is discussed in comparison to other K2NiF4-type compounds.  相似文献   

9.
10.
Recently, 2D organic–inorganic hybrid lead halide perovskites have attracted intensive attention in solid-state luminescence fields such as single-component white-light emitters, and rational optimization of the photoluminescence (PL) performance through accurate structural-design strategies is still significant. Herein, by carefully choosing homologous aliphatic amines as templates, isotypical perovskites [DMEDA]PbCl4 ( 1 , DMEDA=N,N-dimethylethylenediamine) and [DMPDA]PbCl4 ( 2 , DMPDA=N,N-dimethyl-1,3-diaminopropane) having tunable and stable broadband bluish white emission properties were rationally designed. The subtle regulation of organic cations leads to a higher degree of distortion of the 2D [PbCl4]2− layers and enhanced photoluminescence quantum efficiencies (<1 % for 1 and 4.9 % for 2 ). The broadband light emissions could be ascribed to self-trapped excitons on the basis of structural characterization, time-resolved PL, temperature-dependent PL emission, and theoretical calculations. This work gives a new guidance to rationally optimize the PL properties of low-dimensional halide perovskites and affords a platform to probe the structure–property relationship.  相似文献   

11.
Alcoholysis of [Fe2(OtBu)6] as a Simple Route to New Iron(III)‐Alkoxo Compounds: Synthesis and Crystal Structures of [Fe2(OtAmyl)6], [Fe5OCl(OiPr)12], [Fe5O(OiPr)13], [Fe5O(OiBu)13], [Fe5O(OCH2CF3)13], [Fe5O(OnPr)13], and [Fe9O3(OnPr)21] · nPrOH New alkoxo‐iron compounds can be synthesized easily by alcoholysis of [Fe2(OtBu)6] ( 1 ). Due to different bulkyness of the alcohols used, three different structure types are formed: [Fe2(OR)6], [Fe5O(OR)13] and [Fe9O3(OR)21] · ROH. We report synthesis and crystal structures of the compounds [Fe5OCl(OiPr)12] ( 2 ), [Fe2(OtAmyl)6] ( 3 ), [Fe5O(OiPr)13] ( 4 ), [Fe5O(OiBu)13] ( 5 ), [Fe5O(OCH2CF3)13] ( 6 ), [Fe9O3(OnPr)21] · nPrOH ( 7 ) and [Fe5O(OnPr)13] ( 8 ). Crystallographic Data: 2 , tetragonal, P 4/n, a = 16.070(5) Å, c = 9.831(5) Å, V = 2539(2) Å3, Z = 2, dc = 1.360 gcm?3, R1 = 0.0636; 3 , monoclinic, P 21/c, a = 10.591(5) Å, b = 10.654(4) Å, c = 16.740(7) Å, β = 104.87(2)°, V = 1826(2) Å3, Z = 2, dc = 1.154 gcm?3, R1 = 0.0756; 4 , triclinic, , a = 20.640(3) Å, b = 21.383(3) Å, c = 21.537(3) Å, α = 82.37(1)°, β = 73.15(1)°, γ = 61.75(1)°, V = 8013(2) Å3, Z = 6, dc = 1.322 gcm?3, R1 = 0.0412; 5 , tetragonal, P 4cc, a = 13.612(5) Å, c = 36.853(5) Å, V = 6828(4) Å3, Z = 4, dc = 1.079 gcm?3, R1 = 0.0609; 6 , triclinic, , a = 12.039(2) Å, b = 12.673(3) Å, c = 19.600(4) Å, α = 93.60(1)°, β = 97.02(1)°, γ = 117.83(1)°, V = 2600(2) Å3, Z = 2, dc = 2.022 gcm?3, R1 = 0.0585; 7 , triclinic, , a = 12.989(3) Å, b = 16.750(4) Å, c = 21.644(5) Å, α = 84.69(1)°, β = 86.20(1)°, γ = 77.68(1)°, V = 4576(2) Å3, Z = 2, dc = 1.344 gcm?3, R1 = 0.0778; 8 , triclinic, , a = 12.597(5) Å, b = 12.764(5) Å, c = 16.727(7) Å, α = 91.94(1)°, β = 95.61(1)°, γ = 93.24(2)°, V = 2670(2) Å3, Z = 2, dc = 1.323 gcm?3, R1 = 0.0594.  相似文献   

12.
Solid state reactions, by using a flux, lead to the new compounds Sr3Ga2O5Cl2 (A) and Sr3Fe1.18Al0.82O5Cl2 (B). By means of single crystal X-Ray determinations a monoclinic symmetry (space group C 2 2 -P21, (A):a=9.569 (2) Å; (B):a=9.550 (2) Å,Z=4) was found. Both compounds are not isotypic to Sr3Fe2O5Cl2 but crystallize like Ba3Fe2O5Cl2.
  相似文献   

13.
14.
The synthesis of previously unknown perovskite (CH3NH3)2PdCl4 is reported. Despite using an organic cation with the smallest possible alkyl group, a 2D organic–inorganic layered Pd‐based perovskites was still formed. This demonstrates that Pd‐based 2D perovskites can be obtained even if the size of the organic cation is below the size limit predicted by the Goldschmidt tolerance‐factor formula. The (CH3NH3)2PdCl4 phase has a bulk resistivity of 1.4 Ω cm, a direct optical gap of 2.22 eV, and an absorption coefficient on the order of 104 cm?1. XRD measurements suggest that the compound is moderately stable in air, an important advantage over several existing organic–inorganic perovskites that are prone to phase degradation problems when exposed to the atmosphere. Given the recent interest in organic–inorganic perovskites, the synthesis of this new Pd‐based organic–inorganic perovskite may be helpful in the preparation and understanding of other organic–inorganic perovskites.  相似文献   

15.
The mononuclear diamagnetic compound {Fe(bztpen)[N(CN)2]}(PF6)CH3OH (1) (bztpen = N-benzyl-N,N',N'-tris(2-pyridylmethyl)ethylenediamine) has been synthesized and its crystal structure studied. Complex 1 can be considered to be the formal precursor of two new dinuclear, dicyanamide-bridged iron(II) complexes with the generic formula {[(Fe(bztpen)]2[mu-N(CN)2]}(PF6)3 x n H2O (n = 1 (2) or 0 (3)), which have been characterized in the solid state and in solution. In all three complexes, the iron atoms have a distorted [FeN6] octahedral coordination defined by a bztpen ligand and a terminal (1) or a bridging dicyanamide ligand (2 and 3). In the solid state, 2 and 3 can be considered to be molecular isomers that differ by the relative position of the phenyl ring of the two {Fe(bztpen)[N(CN)2]}+ halves (cis and trans, respectively). Depending on the texture of the sample, 2 exhibits paramagnetic behavior or displays a very incomplete spin transition at atmospheric pressure. Complex 3 undergoes a gradual two-step spin transition with no observed hysteresis in the solid state. Both steps are approximately 100 K wide, centered at approximately 200 K and approximately 350 K, with a plateau of approximately 80 K separating the transitions. The crystal structure of 3 has been determined in steps of approximately 50 K between 400 K and 90 K, which provides a fascinating insight into the structural behavior of the complex and the nature of the spin transition. Order-disorder transitions occur in the dicyanamide bridge and the PF6(-) ions simultaneously, with the spin-crossover behavior suggesting that these transitions may trigger the two-step character. In solution, 2 and 3 display very similar continuous spin conversions. Electrochemical studies of 2 and 3 show that the voltammograms are typical of dimeric systems with electronic coupling of the metals through the dicyanamide ligand.  相似文献   

16.
Geometrical and electronic structures of the neutral and singly negatively charged Fe6On and Fe7Om clusters in the range of 1 ≤ n ≤ 20 and 1 ≤ m ≤ 24, respectively, are computed using density functional theory with the generalized gradient approximation. The largest clusters in the two series, Fe6O20 and Fe7O24, can be described as Fe(FeO4)5 and Fe(FeO4)6 or alternatively as [FeO5](FeO3)5 and [FeO6](FeO3)6, respectively. The Fe6O20 and Fe7O24 clusters possess adiabatic electron affinities (EAad) of 5.64 eV and 5.80 eV and can be attributed to the class of hyperhalogens since FeO4 is an unique closed‐shell superhalogen with the EAad of 3.9 eV. The spin character of the lowest total energy states in both series changes from ferromagnetic to ferrimagnetic or antiferromagnetic when the first Fe? O? Fe bridge is formed. Oxidation decreases substantially the polarizability per atom of the initial bare clusters; namely, from 5.98 Å3 of Fe6 to 2.47 Å3 of Fe6O20 and from 5.67 Å3 of Fe7 to 2.38 Å3 of Fe7O24. The results of our computations pertaining to the binding energies of O, Fe, O2, and FeO in the Fe7Om series provide an explanation for the experimentally observed abundance of the iron oxide nanoparticles with stoichiometric compositions. © 2016 Wiley Periodicals, Inc.  相似文献   

17.
18.
Aurivillius phases have been routinely known as excellent ferroelectrics and have rarely been deemed as materials that luminesce in the near-infrared (NIR) region. Herein, it is shown that the Aurivillius phases can demonstrate broadband NIR luminescence that covers telecommunication and biological optical windows. Experimental characterization of the model system Bi2.14Sr0.75Ta2O9−x, combined with theoretical calculations, help to establish that the NIR luminescence originates from defective [Bi2O2]2+ layers. Importantly, the generality of this finding is validated based on observations of a rich bank of NIR luminescence characteristics in other Aurivillius phases. This work highlights that incorporating defects into infinitely repeating [Bi2O2]2+ layers can be used as a powerful tool to space-selectively impart unusual luminescence emitters to Aurivillius-phase ferroelectrics, which not only offers an optical probe for the examination of defect states in ferroelectrics, but also provides possibilities for coupling of the ferroelectric property with NIR luminescence.  相似文献   

19.
以浸渍法制备的Fe2O3/γ-Al2O3为载体,采用均相沉积沉淀方法制备了Au/Fe2O3/Al2O3催化剂.该催化剂在丙烯选择催化还原NO反应中显示出很好的低温催化活性,300℃时NO被选择还原为N2的转化率可达43%,而在Au/Al2O3催化剂上,NO的转化率仅为21%.水蒸气的加入对催化剂活性的影响较小.X射线衍射结果表明,Au和Fe2O3高度分散在Al2O3载体上.吸附氢气的程序升温还原结果表明,Au与Fe2O3之间存在着强相互作用,Au的存在促进了Fe2O3的还原,Au和Fe2O3之间的协同作用可能是Au/Fe2O3/Al2O3催化剂在丙烯选择还原NO反应中具有较高低温催化活性的原因之一.  相似文献   

20.
The temperature dependence of the molar heat capacities of the tellurites Fe2(TeO3)3, Fe2TeO5 and Fe2Te4O11 were determined. By statistical manipulation of the values obtained, the parameters in the equations for the corresponding compounds showing this dependence were determined using the least-squares method. These equations together with the standard molar entropies were used to determine the thermodynamic functions Δ0T S m0, ΔTT,H m0 and (Φm0 + Δ0T’ H m0 / T) for T’=298.15 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号