首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
樊京  蔡广宇 《物理学报》2010,59(12):8574-8578
数值仿真研究了一种可调谐的双开口谐振环(DSRR)超材料.在平行入射的电磁波激励下,这种DSRR单元可以在不同的频段分别表现出磁谐振和电谐振.当外加电场E与DSRR的双开口平行时,DSRR受激励得到的磁谐振和电谐振强度最大.随着DSRR超材料沿外加磁场H方向顺时针旋转,其磁谐振和电谐振频率基本保持不变,但谐振强度均发生显著下降,同时对应透射相位的突变也逐渐降低.提出的超材料调谐方法只需要简单地旋转材料,而不需要改变原有超材料单元的结构或者增加额外的激励场,极大地简化了可调谐超材料的制备及应用,在电磁开关、相位调制等方面具有潜在的应用.同时,这种简单的方法有希望应用于更高频段的超材料调谐,可以有效地拓展太赫兹频段和光频段超材料的实际应用.  相似文献   

2.
We design a double U-shaped ring-based metamaterial, which has a good capability of the realization of sense of refractive indexes. The metamaterial consists of two regularly spaced parallel arrays of U-shaped rings with 90° rotation embedded in a medium, in the top of which an array of holes are dug for sensing unknown materials. Our simulations demonstrate that the structure can recognize subtle changes in refractive indexes of the unknown materials by special resonance frequencies, and it can thus be regarded as a highly sensitive sensor. Furthermore, it could also be integrated into other electronic devices because of its tiny size.  相似文献   

3.
A metamaterial absorber (MA) based sensor is designed and analysed for various important applications including pressure, temperature, density, and humidity sensing. Material parameters, as well as equivalent circuit model have been extracted and explained. After obtaining a perfect absorption (PA) at around 6.46 GHz and 7.68 GHz, surface current distributions at resonance points have been explained. Since bandwidth and applicability to different sensor applications are important for metamaterial sensor applications, we have realized distinctive sensor demonstrations for pressure, temperature, moisture content and density and the obtained results have been compared with the current literature. The proposed structure uses the changes on the overall system resonance frequency which is caused by the sensor layer’s dielectric constant that varies depending on the electromagnetic behaviour of the sample placed in. This model can be adapted to be used in sensor applications including industrial, medical and agricultural products.  相似文献   

4.
A narrow metal strip inspired by the left-handed metamaterial and sensitive LC resonator structure has been released in this work where the narrow metal strip is presented as a tunnel structure which can enhance electric and magnetic properties. A commercially available electromagnetic simulator CST Microwave Studio is utilized to design and investigate the eSRR (electric split-ring resonator) and tunnelled LC resonator structures. Furthermore, ADS (Advance Design software) is used to determine the scattering parameters of the equivalent circuit. The proposed metamaterial structure is employed as a sensor operating in the C-band (6.88 GHz) of the microwave region, and its sensing properties are tested using glossy paper as an obstacle. The designed metamaterial tunnelling structure exhibits very high sensitivity toward dielectric obstacles at different rotational angles and thus can be potentially used in various sensing applications. The field enhancement effects on sensing application are verified by measured obtained results for eSRR and tunnelled LC resonator structures.  相似文献   

5.
In this paper an optical surface plasmon resonance (SPR) sensor with metamaterial for four and five layered structure is studied. The numerical results presented in this paper leads to a significant properties of metamaterials in sensing field. Computed results of SPR sensors using metamaterial are compared with conventional optical SPR sensors for four and five layered structure. It is seen that wider dynamic range or effective range of measurable refractive index increases when metamaterial layer is used. It is also verified that SPR sensor with metamaterial layer can dramatically enhance the resolution and reduce the reflectivity compared with conventional SPR. Validity of the magnetic field results is proved on the basis of smooth match of the fields in the different layers of the proposed optical SPR sensor.  相似文献   

6.
Yuan L  Yang J 《Optics letters》2005,30(6):601-603
A two-loop-based low-coherence multiplexing fiber-optic sensor network is proposed and demonstrated. It greatly extends the multiplexing capacity of this kind of sensor. A practical implementation of this scheme uses a popular amplified spontaneous emission light source and standard single-mode fiber, which are commonly used in the communications industry. The sensor's two-loop topology is completely passive. Absolute length measurements can be obtained for each sensing fiber segment for use in measuring the quasi-distribution strain or temperature. For large-scale smart structures this technique not only extends the multiplexing potential but also provides a redundancy for the sensing system. This means that the two-loop sensor network can break down at several points and the sensing system will still work even if some of the embedded two-loop sensors have been destroyed. The robustness of the nine-sensor two-loop sensing network is investigated and discussed.  相似文献   

7.
刘冉  史金辉  E.Plum  V.A. Fedotov  N.I. Zheludev  E.Plum 《物理学报》2012,61(15):154101-154101
基于两段相同金属分裂环谐振器构成的单层结构, 从理论及实验方面研究了平面超材料的可调谐Fano谐振. 实验测量了平面超材料对TE和TM入射波的电磁响应, 利用电磁波的入射角度控制Fano谐振的强度, 实现了谐振的开关特性, 谐振频率红移可达到21%. 基于有限元法给出了平面超材料的场分布, 强的正常色散表明平面超材料的电磁响应可类比经典电磁诱导透明现象, 仿真与实验结果相符合. 对称结构超材料Fano谐振的开/关特性为超材料性能的可调谐控制提供了有效途径.  相似文献   

8.
轮辐式光纤光栅压力传感器的设计与实现   总被引:10,自引:9,他引:1  
利用光纤光栅作为基本传感元件,设计研制了一种基于轮辐式压力盒装置的新型光纤光栅压力传感器.常温下在0~30 KN的范围内,其测量线性度达到99.91%,灵敏度达到22 N,且响应速度快.与其它类型的光纤光栅压力传感器相比,轮辐式光纤光栅压力传感器具有更大的测量范围、更高的抗干扰能力,并且由于光纤光栅本身的波分复用特性,可以很方便地构成压力传感网络进行多种物理量、多点的测量.实验表明:本传感系统具有结构简单、操作方便、滞后小、重复性好、结构高度小、重量轻等优点,在桥梁、大厦等超大型建筑以及大型管道等的检测与监测方面将会有更为广阔的应用前景.  相似文献   

9.
A field demonstration of a new and hybrid wireless sensing network paradigm for structural health monitoring (SHM) is presented. In this paradigm, both power and data interrogation commands are conveyed via a mobile agent that is sent to each sensor node to perform individual interrogations, which can alleviate several limitations of traditional sensing networks. This paper will discuss such prototype systems, which will be used to interrogate capacitive-based and impedance-based sensors for SHM applications. The capacitive-based wireless sensor node is specifically built to collect peak displacement measurements. In addition, a wireless sensor node for collecting electromechanical impedance data has also been developed. Both sensor nodes are specifically designed to accept various power sources and to be wirelessly triggered on an as-needed basis so that they can be used for the hybrid sensing network approach. The capabilities of these miniaturized and portable devices are demonstrated in the laboratory and the field, which was performed at the Alamosa Canyon Bridge in southern New Mexico.  相似文献   

10.
A parallel-multipoint fiber-optic temperature sensor for monitoring ambient temperature with a measured temperature resolution of approximately 0.03 °C is presented. The sensor relies on the temperature-dependent Fresnel reflection from each interface between a sensing fiber tip and a thermo-optic medium. An arrayed waveguide grating is used to achieve wavelength-division multiplexed-multipoint sensing. Applying the relative-intensity technique, the errors resulting from fluctuation of the light source and other influences of the environment are eliminated, and the stability for long time measurement can be improved.  相似文献   

11.
鲁磊  屈绍波  施宏宇  张安学  张介秋  马华 《物理学报》2013,62(15):158102-158102
设计、仿真并实验验证了基于宽边耦合螺旋结构的低频小型化超材料吸波体. 实验测试结果表明, 该超材料吸波体在1.39 GHz吸收率达到最大为98%, 其单元尺寸和总厚度均为6.8 mm, 约为1/32工作波长, 实现小型化窄带吸波. 由于吸波体中螺旋结构是旋转对称排列的, 因而其对垂直入射电磁波的极化方向是不敏感的. 此外, 该超材料吸波体对斜入射横电和横磁极化电磁波在60°时, 仍具有强吸收. 关键词: 超材料 吸波体 小型化  相似文献   

12.
针对飞行器机载环境多参量综合测试需求,研究了一种基于反射光谱特征辨识的光纤布拉格光栅(FBG)气压与温度集成监测方法,给出了基于膜片式结构的双参量传感机理及其理论模型。采用基于耦合模理论的OptiGrating软件,得到不同气压与温度条件下光纤布拉格光栅传感器仿真反射光谱。在此基础上,借助弹塑性和恢复性能优良的平膜片感压机构,构建了膜片式双光纤气压/温度集成监测模型。研究表明,恒温条件下应变传感光纤光栅反射光谱随气压增加而逐渐向短波方向偏移,其中心波长灵敏度约为0.803 0 nm·MPa-1,且反射谱主峰及其旁瓣峰值均随气压变化呈现良好线性关系;当气压恒定而温度变化时,处于仅感温不受力状态的温度传感光纤光栅反射光谱中心波长灵敏度约为9.39 pm·℃-1;当气压与温度交叉变化时,能够实现对变温条件下的微小气压变化实时监测。传感光纤光栅受非均匀应变效应反射光谱存在一定啁啾现象,其反射光谱旁瓣峰值波长随环境温度、气压变化均会发生偏移,具有良好线性关系,且在不同气压下反射光谱对应的同一阶数旁瓣峰值幅度相等。该研究能够为航空航天器系统多物理参量在线综合测试提供有益帮助。  相似文献   

13.
基于裂缝谐振环结构的降频技术,首先设计了一种电尺寸较小的左手介质微带线单元,并根据电磁波在微带线上的传输和反射数据,分别计算了左手介质的有效介电常数和有效磁导率.之后针对左手介质八元阵列进行三维电磁仿真实验,结果表明该八元阵列在左手介质频段上具有独特的后向波效应,从而证实了该左手介质频段的存在.与传统的左手介质微带单元相比,阐述的左手介质单元的电尺寸减小了60%,而且结构简单,便于加工,适用于平面电路器件的小型化等应用研究工作. 关键词: 左手介质 小型化 双负特性 后向波特性  相似文献   

14.
Wu C  Fu HY  Qureshi KK  Guan BO  Tam HY 《Optics letters》2011,36(3):412-414
A fiber-optic Fabry-Perot interferometer was constructed by splicing a short length of photonic crystal fiber to a standard single-mode fiber. The photonic crystal fiber functions as a Fabry-Perot cavity and serves as a direct sensing probe without any additional components. Its pressure and temperature responses in the range of 0-40 MPa and 25°C-700°C were experimentally studied. The proposed sensor is easy to fabricate, potentially low-cost, and compact in size, which makes it very attractive for high-pressure and high-temperature sensing applications.  相似文献   

15.
微纳尺度光纤布拉格光栅折射率传感的理论研究   总被引:3,自引:0,他引:3       下载免费PDF全文
梁瑞冰  孙琪真  沃江海  刘德明 《物理学报》2011,60(10):104221-104221
亚波长直径微纳光纤强倏逝场传输的光学特性,使其对周围介质折射率的变化具有极高的灵敏度.本文提出一种基于微纳尺度光纤布拉格光栅(MNFBG)的折射率传感器,结合微纳光纤倏逝场传输和光纤布拉格光栅(FBG)强波长选择的特性来实现高精度折射率传感,对其制备可行性进行了讨论.论文中对MNFBG折射率传感机理进行了深入的理论分析,并使用OptiGrating软件进行了数值模拟,模拟数据显示MNFBG折射率测量的灵敏度随着光纤半径的减小而增加,其中光纤半径为400 nm的MNFBG灵敏度可达到993 nm/RIU,相比于包层蚀刻的FBG灵敏度增加了170倍,说明MNFBG对发展微型化、高灵敏度折射率传感器具有良好的应用前景. 关键词: 微纳光纤 光纤布拉格光栅 折射率传感  相似文献   

16.
A planar metamaterial structure consisting of two layers of split-ring resonator (SRR) arrays is demonstrated to form the image of a point source with subwavelength resolution. The source frequency is swept through the resonance gap of the metamaterial layers and the lateral field intensity distribution is recorded on the transmission side of the metamaterial. When the source is tuned to the resonance frequency of SRRs, the metamaterial acts as a high permeability medium and a distinct image with subwavelength resolution in the lateral direction is obtained. Increasing the distance between the individual SRR layers reduces the interlayer coupling, and the intensity and spatial resolution of the image decrease rapidly.  相似文献   

17.
One of the most frequently applied techniques to detect nanoparticles in air is analyzing laser light scattering. This technique is very flexible while offering high accuracy and reliability. Yet its functionality highly depends on the sensitivity of the measurement system components. Especially for miniaturized sensor devices with limited space, additional techniques are needed to preserve high intensity of scattered light. In our work we demonstrate a technique using two spherical ring mirrors to identify nanoparticles with diameters below 100 nm in a forward-scattering setup. We succeeded measuring polystyrene particles with diameters of 92 nm with a signal-to-noise-ratio of more than 10.  相似文献   

18.
In this work, the uniform and vertically aligned single wall carbon nanotubes (SWCNTs) have been grown on Iron (Fe) deposited Silicon (Si) substrate by plasma enhanced chemical vapor deposition (PECVD) technique at very low temperature of 550 °C. The as-grown samples of SWCNTS were characterized by field emission scanning electron microscope (FESEM), high resolution transmission electron microscope (HRTEM) and Raman spectrometer. SWCNT based chemiresistor gas sensing device was fabricated by making the proper gold contacts on the as-grown SWCNTs. The electrical conductance and sensor response of grown SWCNTs have been investigated. The fabricated SWCNT sensor was exposed to ammonia (NH3) gas at 200 ppm in a self assembled apparatus. The sensor response was measured at room temperature which was discussed in terms of adsorption of NH3 gas molecules on the surface of SWCNTs. The achieved results are used to develope a miniaturized gas sensor device for monitoring and control of environment pollutants.  相似文献   

19.
陈超  王君 《中国物理 B》2017,26(4):44101-044101
A metamaterial absorber is computed numerically and measured experimentally in a 150-THz~300-THz range.The measured absorber achieves high absorption rate for both transverse electric(TE) and transverse magnetic(TM) polarizations at large angles of incidence.An absorption sensor scheme is proposed based on the measured absorber and the variations of surrounding media.Different surrounding media are applied to the surface of the absorption sensor(including air,water,and glucose solution).Measured results show that high figure of merit(FOM) values are obtained for different surrounding media.The proposed sensor does not depend on the substrate,which means that it can be transplanted to different sensing platforms conveniently.  相似文献   

20.
We propose a concept of a low-symmetry three-dimensional metamaterial exhibiting a double-continuum Fano (DCF) optical resonance. Such metamaterial is described as a birefringent medium supporting a discrete dark electromagnetic state weakly coupled to the continua of two nondegenerate bright bands of orthogonal polarizations. It is demonstrated that light propagation through such DCF metamaterial can be slowed down over a broad frequency range when the medium parameters (e.g., frequency of the dark mode) are adiabatically changed along the optical path. Using a specific metamaterial implementation, we demonstrate that the DCF approach to slow light is superior to that of the electromagnetically induced transparency because it enables spectrally uniform group velocity and transmission coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号