首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A novel strategy for the fabrication of multiwall carbon nanotube-nanocrystal heterostructures is shown. Different quantum dots (QDs) with narrow size distributions were covalently coupled to carbon nanotubes (CNTs) and silica-coated CNTs in a simple, uniform, and controllable manner. The structural and optical properties of CNT/QD heterostructures are characterized by electron microscopy and photoluminescence spectroscopy. Complete quenching of the PL bands in both QD core and core/shell heterostructures was observed after adsorption to the CNTs, presumably through either carrier ionization or energy transfer. The deposition of a silica shell around the CNTs preserves the fluorescence properties by insulating the QD from the surface of the CNT.  相似文献   

2.
碳纳米管/ZnO纳米复合体的制备和表征   总被引:3,自引:0,他引:3  
通过将不同直径的ZnO纳米颗粒与碳纳米管连接制备了碳纳米管/ZnO纳米复合体. 将团聚的ZnO纳米颗粒分散并用表面活性剂CTAB使纳米颗粒带正电. 化学氧化碳纳米管使其带负电. ZnO/CTAB微团通过碳管表面羧基与CTAB的静电作用与碳纳米管连接形成纳米复合体. 研究了复合体形成的不同实验条件, 表征了碳纳米管/ZnO纳米复合体的结构并研究了纳米复合体的光学特性. 研究表明, 与碳纳米管连接的ZnO纳米颗粒是互不连接的并保持量子点的特性. 光致发光研究表明ZnO纳米颗粒的激发在纳米复合体中有淬灭.  相似文献   

3.
Carbon nanotubes (CNTs) possess outstanding properties and a unique physicochemical architecture, which may serve as an alternative platform for the delivery of various therapeutic molecules. This review focuses on recent progress in the field of CNTs for biomedical applications. After a short, general physico-chemical introduction to CNTs, we introduce different methods for CNT surface modification, facilitating their dispersions in physiological solutions, on the one hand, and binding a wide range of molecules or drug-loaded liposomes, on the other. We summarize imaging evidences on the structure of CNT-drug conjugates and their relevant uptake mechanisms by the cell. Lastly, we review current repots on CNT toxicity and new developments in CNT-based medical applications: photo-thermal therapy, drug delivery and gene therapy.  相似文献   

4.
Simultaneous detection of multiple DNA targets was achieved based on a biocompatible graphene quantum dots (GQDs) and carbon nanotubes (CNTs) platform through spontaneous assembly between dual‐color GQD‐based probes and CNTs and subsequently self‐recognition between DNA probes and targets.  相似文献   

5.
Aligning carbon nanotubes (CNTs) is a key challenge for fabricating CNT‐based electronic devices. Herein, we report a spherical nucleic acid (SNA) mediated approach for the highly precise alignment of CNTs at prescribed sites on DNA origami. We find that the cooperative DNA hybridization occurring at the interface of SNA and DNA‐coated CNTs leads to an approximately five‐fold improvement of the positioning efficiency. By combining this with the intrinsic positioning addressability of DNA origami, CNTs can be aligned in parallel with an extremely small angular variation of within 10°. Moreover, we demonstrate that the parallel alignment of CNTs prevents incorrect logic functionality originating from stray conducting paths formed by misaligned CNTs. This SNA‐mediated method thus holds great potential for fabricating scalable CNT arrays for nanoelectronics.  相似文献   

6.
Glassy-carbon electrodes (GCEs) are modified with preoxidized multiwalled carbon nanotubes (CNTs). According to the data of atomic force microscopy, the layers of CNTs on GCEs possess a homogeneous nanostructurized surface. The voltammetric properties of a GCE/CNT depend on the modifier load. Guanine and deoxyguanosine monophosphate are strongly adsorbed on GCE/CNT and oxidized at +690 and +930 mV (pH 7.0), respectively. The oxidation current of guanine DNA nucleotides adsorbed on a GCE/CNT is significantly higher for the thermally denaturated biopolymer than for the native one. Our results are of interest for the development of sensors based on the electrochemical properties of nucleic acids.  相似文献   

7.
With the high demand for nanoelectronic devices, extensive research has focused on the use of single walled carbon nanotubes (CNTs) due to their high electron carrier mobility, large tensile strength, and single nanometer dimensions. Despite their promise, however, their applicability has been greatly hindered by the inherent difficulties of both separating nanotubes of different chiralities and diameters and positioning them from metallic tubes and positioning them in a precise location on a surface. In recent years, single stranded DNA (ssDNA) has been identified as a potential solution for both of these problems since DNA can be used to both separate the different types of CNTs as well as direct their organization. We demonstrate here the first principles on how to guide CNT assembly directly on surfaces from solution by specific DNA hybridization. It was found that the specific DNA sequence used to disperse the carbon nanotubes greatly influences the adsorption and specificity of nanotube binding to the surface. Furthermore, we demonstrate here that thermal annealing can correct misaligned tubes or incorrect binding. These studies provide an excellent foundation for employing two-dimensional DNA templates for CNT organization for nanoelectronic logic and memory based applications. Furthermore, using a single biomaterial to both sort and place CNTs in minimal steps would greatly help the throughput, manufacturability, and cost of such devices.  相似文献   

8.
The effects of oxygen reactive ion etching (RIE) on the surface wettability of aligned carbon nanotube (CNT) films have been systematically investigated. It was found that 3 s of RIE treatment could change the surface of CNT films from hydrophobic to more hydrophilic. The degree of modification in the surface wettability of the film could be controlled by the flow rate of O2 gas during the RIE process. It is proposed that such a surface hydrophobicity change is related to the opened structure and functionalized tip of as-treated CNTs by oxygen reactive ions. More importantly, after the RIE treatment, focused laser pruning was utilized to trim the surface layer of treated CNTs and revert them back to a hydrophobic surface. Combined with the laser pruning technique and O2 RIE treatment, CNT templates with interlaced wettability surfaces in a stripe pattern have been fabricated. It has been demonstrated that this interlaced and structured wettability pattern can be used to selectively assemble microspheres or quantum dots on the aligned CNT films with desired patterns.  相似文献   

9.
We report a ternary hybrid photocatalyst architecture with tailored interfaces that boost the utilization of solar energy for photochemical CO2 reduction by synergizing electron and heat flows in the photocatalyst. The photocatalyst comprises cobalt phthalocyanine (CoPc) molecules assembled on multiwalled carbon nanotubes (CNTs) that are decorated with nearly monodispersed cadmium sulfide quantum dots (CdS QDs). The CdS QDs absorb visible light and generate electron-hole pairs. The CNTs rapidly transfer the photogenerated electrons from CdS to CoPc. The CoPc molecules then selectively reduce CO2 to CO. The interfacial dynamics and catalytic behavior are clearly revealed by time-resolved and in situ vibrational spectroscopies. In addition to serving as electron highways, the black body property of the CNT component can create local photothermal heating to activate amine-captured CO2, namely carbamates, for direct photochemical conversion without additional energy input.  相似文献   

10.
Polymer crystallization-driven, periodic patterning on carbon nanotubes   总被引:4,自引:0,他引:4  
We report herein a unique means to periodically pattern polymeric materials on individual carbon nanotubes (CNTs) using a controlled polymer crystallization method. One-dimensional (1D) CNTs were periodically decorated with polymer lamellar crystals, resulting in nano-hybrid shish-kebab (NHSK) structures. The periodicity of the polymer lamellae varies from 20 to 150 nm. The kebabs are approximately 5-10 nm thick (along CNT direction) with a lateral size of approximately 20 nm to micrometers, which can be readily controlled by varying crystallization conditions. Both polyethylene and Nylon 66 were successfully decorated on single-walled carbon nanotubes (SWNTs), multiwalled carbon nanotubes (MWNTs), as well as vapor grown carbon nanofibers (CNFs). The formation mechanism was attributed to "size-dependent soft epitaxy". Because NHSK formation conditions depend on CNT structures, it further provides a unique opportunity for CNT separation. The reported method opens a gateway to periodically patterning polymers and different functional groups on individual CNTs in an ordered and controlled manner, an attractive research field that is yet to be explored.  相似文献   

11.
Carbon nanotubes (CNTs) were non‐covalently functionalized with chitosan (Chit) and then employed as the support for PtRu nanoparticles. The functionalization was carried out at room temperature without the use of corrosive acids, thereby preserving the integrity and the electronic conductivity of the CNTs. Transmission electron microscopy reveals that PtRu nanoparticles were highly dispersed on the surface of Chit‐functionalized CNTs (CNT‐Chit) with small particle‐size. Cyclic voltammetry studies indicated that the PtRu nanoparticle/CNT‐Chit nanohybrids have a higher electrochemical surface area, electrocatalytic performance, and stability towards methanol oxidation compared to PtRu nanoparticles supported on the pristine CNTs.  相似文献   

12.
《Analytical letters》2012,45(11):1964-1974
Abstract

Cysteamine-stabilized CdTe quantum dots were used to directly conjugate with single stranded DNA through electrostatic attraction between positive amino function groups on the surface of CdTe quantum dots and negatively charged DNA. The conjugates exhibited different optical properties from that of CdTe quantum dots, for example, the fluorescence intensity was enhanced obviously with maximum emission peaks gradually red-shifting, and the conjugates were more stable. Under the optimum conditions, the fluorescence intensity was proportional to concentration of DNA over the range 0.16–0.48 µg/mL. This proposed method demonstrated a versatile tool for the fluorescence probing of target DNA and fluorescence labeling.  相似文献   

13.
We report the formation of a stable superhydrophobic surface via aligned carbon nanotubes (CNTs) coated with a zinc oxide (ZnO) thin film. The CNT template was synthesized by chemical vapor deposition on an Fe-N catalyst layer. The ZnO film, with a low surface energy, was deposited on the CNT template by the filtered cathodic vacuum arc technique. Contact angle measurement reveals that the surface of the ZnO-coated CNTs is superhydrophobic with water contact angle of 159 degrees . Unlike the uncoated CNTs surface, the ZnO-coated CNTs surface shows no sign of water seepage even after a prolonged period of time. The wettability of the surface can be reversibly changed from superhydrophobicity to hydrophilicity by alternation of ultraviolet (UV) irradiation and dark storage.  相似文献   

14.
The cytotoxicity and cellular uptake of carbon nanotubes (CNTs) has recently attracted considerable interest because of the issue of biosphere‐nanomaterial interactions. The biocompatibility of CNTs is determined by the metal impurities in the CNTs, the size of the CNTs and the CNT dispersion states; in particular, the type of surface modifications on the CNTs affects how they interact with cells and determines their cytotoxicity and cellular uptake. In this study, biocompatible single‐walled carbon nanotubes (SWNTs) wrapped with a water‐soluble copolymer, poly[2‐(dimethylamino)ethyl methacrylate‐co‐methacrylic acid] (PDM), were prepared. We report that these SWNTs have enhanced water dispersibility and cellular internalization but no significant cytotoxic activity against mouse embryonic fibroblast NIH‐3T3 cells.

  相似文献   


15.
PBEPBE‐D3 calculations were performed to investigate how platinum (Pt) interacts with the internal and external surfaces of single‐walled pristine, Si‐, Ge‐, and Sn‐doped (6,6) carbon nanotubes (CNTs). Our calculations showed that atomic Pt demonstrates stronger binding strength on the external surfaces than the internal surface adsorption for the same type of nanotube. In cases of external surface adsorptions, Si‐, Ge‐, and Sn‐doped CNTs show comparable binding energies for Pt, at least 1.40 eV larger than pristine CNT. This enhancement can be rationalized by the strong covalent interactions between Pt and X? C (X = Si, Ge, and Sn) pairs based on structural and projected density of states analysis. In terms of internal surface adsorptions, Ge and Sn doping could significantly enhance the binding of Pt. Pt atom shows much more delocalized and bonding states inside Ge‐ and Sn‐doped CNTs, indicating multiple‐site interaction pattern when atomic Pt is confined inside the nanotubes. However, the internal surface of Si‐doped CNT presents limited enhancement in Pt adsorption with respect to that of pristine CNT because of their similar binding geometries. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
Aligning carbon nanotubes (CNTs) is a key challenge for fabricating CNT-based electronic devices. Herein, we report a spherical nucleic acid (SNA) mediated approach for the highly precise alignment of CNTs at prescribed sites on DNA origami. We find that the cooperative DNA hybridization occurring at the interface of SNA and DNA-coated CNTs leads to an approximately five-fold improvement of the positioning efficiency. By combining this with the intrinsic positioning addressability of DNA origami, CNTs can be aligned in parallel with an extremely small angular variation of within 10°. Moreover, we demonstrate that the parallel alignment of CNTs prevents incorrect logic functionality originating from stray conducting paths formed by misaligned CNTs. This SNA-mediated method thus holds great potential for fabricating scalable CNT arrays for nanoelectronics.  相似文献   

17.
We describe a strategy that permits discrete regions of arrayed carbon nanotubes (CNTs) to be functionalized simultaneously and specifically with DNA oligonucleotides. The different chemical properties of two regions on single CNTs and orthogonal chemical coupling strategies have been exploited to derivatize CNTs within highly ordered arrays with multiple DNA sequences. Through duplex hybridization, we then targeted different DNA sequences with appended metal nanoparticles to distinct sites on the CNT architecture with precise spatial control. The materials generated from these studies represent the first CNTs with bipartite functionalization. The approach described provides a high level of precision in parallel and directed assembly of DNA sequences and appended cargo and is useful for the preparation of novel hybrid bionanomaterials.  相似文献   

18.
Understanding formation mechanisms of hybrids of carbon nanotubes (CNTs) wrapped by polymers and their interactions is critical in modifying solubility of CNTs in aqueous solution and developing new nanotube-based polymer materials. In the present work, we investigate the structural details of poly(styrene-co-sodium styrene sulfonate) (PSS) wrapping around the CNT and the interactions between the PSS chain and the CNT using molecular dynamics (MD) simulations. The fraction of sulfonated groups significantly influences the wrapping conformations of the PSS chain. Due to limited time scale in the MD simulations, two different initial conformations of the chains are introduced to explore the effect of the initial state on the wrapping behavior. When the chains initially wrap around the CNT in a perfect helix manner, more compact pseudo-helical conformations are obtained. For initial straight line arrangement of the chain monomers, the chains adopt looser wrapping conformations. The free-energy analysis and binding interaction of the PSS chain on the CNT surface take a glance on the relationship between the conformational transition of the chain and the energy evolution.  相似文献   

19.
Solubilization of carbon nanotubes (CNTs) is a fundamental technique for the use of CNTs and their conjugates as nanodevices and nanobiodevices. In this work, we demonstrate the preparation of CNT suspensions with “green” detergents made from coconuts and bamboo as fundamental research in CNT nanotechnology. Single-walled CNTs (SWNTs) with a few carboxylic acid groups (3–5%) and pristine multi-walled CNTs (MWNTs) were mixed in each detergent solution and sonicated with a bath-type sonicator. The prepared suspensions were characterized using absorbance spectroscopy, scanning electron microscopy, and Raman spectroscopy. Among the eight combinations of CNTs and detergents (two types of CNTs and four detergents, including sodium dodecyl sulfate (SDS) as the standard), SWNTs/MWNTs were well dispersed in all combinations except the combination of the MWNTs and the bamboo detergent. The stability of the suspensions prepared with coconut detergents was better than that prepared with SDS. Because the efficiency of the bamboo detergents against the MWNTs differed significantly from that against the SWNTs, the natural detergent might be useful for separating CNTs. Our results revealed that the use of the “green” detergents had the advantage of dispersing CNTs as well as SDS.  相似文献   

20.
Single‐walled carbon nanotubes (SWCNTs) have been covalently functionalized with uracil nucleobase. The hybrids have been characterized by using complementary spectroscopic and microscopic techniques including solid‐state NMR spectroscopy. The uracil‐functionalized SWCNTs are able to self‐assemble into regular nanorings with a diameter of 50–70 nm, as observed by AFM and TEM. AFM shows that the rings do not have a consistent height and thickness, which indicates that they may be formed by separate bundles of CNTs. The simplest model for the nanoring formation likely involves two bundles of CNTs interacting with each other via uracil–uracil base‐pairing at both CNT ends. These nanorings can be envisaged for the development of advanced electronic circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号