首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetic Force Microscopy (MFM) tip coated with perpendicular magnetic anisotropy film (PMA tip) is one of the choices for high resolution imaging at low scan height (SH), since it has negligible tip–sample interaction related to its stable magnetic state, sharp, and small tip stray field. In this work, detailed micromagnetic studies are carried out to understand the effect of geometrical and magnetic parameters including the cone angle θ of the PMA tip, intergrain exchange constant $A_{2}^{*}$ , saturation magnetization M s and uniaxial crystalline anisotropy constant K 1 of the tip coating on the MFM tip resolution. To evaluate the resolution performance of the optimized PMA tip, MFM images of high-density granular recording media and patterned media are simulated. We find that, for the PMA tip and its coating, a cone angle in a range of 36.9° to 53.1°, a saturation M s of 700 emu/cm3, a large uniaxial crystalline anisotropy constant K 1 (>4.9×106 erg/cm3) and a high intergrain exchange constant $A_{2}^{*}$ of (0.3–1.0)×10?6 erg/cm are optimized conditions for high resolution imaging. The optimized PMA tip has an excellent performance on imaging of high-density thin film media (bit size of 8×16 nm2) at low SH of 2–8 nm and bit pattern media with a pitch of 50 nm, edge-edge spacing of 5–15 nm at SH of 8–15 nm.  相似文献   

2.
Bit‐patterned media at one terabit‐per‐square‐inch (Tb/in2) recording density require a feature size of about 12 nm. The fabrication and characterization of such magnetic nanostructures is still a challenge. In this Letter, we show that magnetic dots can be resolved at 10 nm spacing using magnetic force microscopy (MFM) tips coated with a magnetic film possessing a perpendicular magnetic anisotropy (PMA). Compared to MFM tips with no special magnetic anisotropy, MFM tips with PMA can resolve the bits clearly, because of a smaller magnetic interaction volume, enabling a simple technique for characterizing fine magnetic nanostructures. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We present domain wall images obtained by using Magnetic Force Microscope (MFM) on magnetic samples like: double layer of permalloy alloy, magnetic hard disk, BaFe12O19 single crystal and YGdTmGa/YSmTmGa magnetic garnet. We have imaged topography and magnetic forces of the same area. The Fe double- and single-layer thin film tips have been prepared to achieve high sensitivity (10–12N) and high resolution of MFM.  相似文献   

4.
We have examined a single flux line in the semi-infinite type-II superconductor. The stray magnetic field of the flux line has been calculated. We have found that the vertical force exerted on a magnetic force microscopy (MFM) tip from the flux line is measurable by currently existing MFM. Two types of magnetic tips were taken into consideration, solid and thin film tips. For example, with a Cobalt film of the thickness of 100 nm and 30 nm on a tip, we found a vertical force of 4*10–10 N and 1.5*10–10 N, respectively. The lateral force exerted on a tip by the flux line was also calculated. The lateral force must be small enough to prevent the flux line from becoming depinned.  相似文献   

5.
We investigate spin domain mapping of a CrO2 thin film using spin-polarized current microscopy at room temperature, where conductive atomic force microscopy (CAFM) with a CrO2-coated tip is used. The nanoscale spin domains of the CrO2 thin film were crosschecked by magnetic force microscopy (MFM). Notably, the CAFM exhibits the spin domains of the CrO2 thin film with higher resolution than the MFM, which may result from a local point contact between the nanoscale CrO2-coated tip and surface of the CrO2 thin film.  相似文献   

6.
We demonstrate ultra-high-resolution magnetic force microscopy images of perpendicular magnetic storage media using carbon nanotube probes coated by ferromagnetic Co90Fe10 films (20, 30, 40, and 50 nm). By optimizing ferromagnetic film thickness (effective tip diameter), we obtained best magnetic domain image with an 40 nm-Co90Fe10-coated tip (50 nm tip diameter) about a lateral detect density of 1200 k flux per inch on perpendicular magnetic storage medium, one of the highest resolutions in MFM imaging reported for this material system and structure. The observed dependence of tip dimension on signal contrast and image resolution was successfully explained by a theoretical analysis indicating that the signal contrast, along with the physical probe-tip dimension, should be taken into account to design magnetic probes tips for high-resolution magnetic force microscopy.  相似文献   

7.
李丹  李国庆 《物理学报》2018,67(15):157501-157501
用MgO和SiO_2两种氧化物将FePt薄膜与Si(100)基片隔离,分析隔离层在FePt层发生A1→L1_0转变过程中的作用,寻找用Si母材涂敷L1_0-FePt磁性层来提高磁力显微镜针尖矫顽力的合理方案.采用磁控溅射法在400?C沉积Fe Pt薄膜,在不同温度进行2 h的真空热处理,分析晶体结构和磁性的变化.结果表明:没有隔离层,Si基片表层容易发生扩散,50 nm厚FePt薄膜的矫顽力最大只有5kOe(1 Oe=10~3/(4π)A·m~(-1));而插入隔离层,矫顽力可以超过10 kOe;MgO在Si基片上容易碎裂,热处理温度不能高于600?C,用作隔离层,FePt的最大矫顽力为12.4 kOe;SiO_2与Si基片的晶格匹配更好,热膨胀系数差较小,能承受的最高热处理温度可以超过800?C,使得Fe Pt的矫顽力可以在5 kOe到15 kOe范围内调控,更适合用于制作矫顽力高并可控的磁力显微镜针尖.  相似文献   

8.
A near-field scanning microwave microscope (NSMM) incorporating an atomic force microscope (AFM) probe tip was used for the direct imaging of magnetic domains of a hard disk under an external magnetic field. We directly imaged the magnetic domain changes by measuring the change of reflection coefficient S11 of the NSMM at an operating frequency near 4.4 GHz. Comparison was made to the magnetic force microscope (MFM) image. Using the AFM probe tip coupled to the tuning fork distance control system enabled nano-spatial resolution. The NSMM incorporating an AFM tip offers a reliable means for quantitative measurement of magnetic domains with nano-scale resolution and high sensitivity.  相似文献   

9.
Using combination of micromagnetic calculations and magnetic force microscopy (MFM) imaging we find optimal parameters for novel magnetic tips suitable for switching magnetization MFM. Switching magnetization MFM is based on two-pass scanning atomic force microscopy with reversed tip magnetization between the scans. Within the technique the sum of the scanned data with reversed tip magnetization depicts local atomic forces, while their difference maps the local magnetic forces. Here we propose the design and calculate the magnetic properties of tips suitable for this scanning probe technique. We find that for best performance the spin-polarized tips must exhibit low magnetic moment, low switching fields, and single-domain state at remanence. The switching field of such tips is calculated and optimum shape of the Permalloy elements for the tips is found. We show excellent correspondence between calculated and experimental results for Py elements.  相似文献   

10.
We studied a FePt-C granular film for ultra-high density perpendicular recording media towards 1 Tbits/in.2 because of strong magnetocrystalline anisotropy at its L10-phase. We deposit a Fe52Pt48-C50 % (6.7 nm) film on oxidized silicon substrates at 400 °C and 0.50 Pa Ar pressure. The perpendicular anisotropy of the film is 20 kOe, with a perfect squareness of 1. Bright-field transmission electron microscopy (TEM) images display that the FePt granular film has small and uniform grains of 6.4 ± 1.5 nm. Further work on high-resolution TEM imaging demonstrates excellent L10 ordering for this FePt granular film, which is consistent with the texture measurement by X-ray diffraction. Thus, we prove that FePt granular film is a promising candidate for high-density heat-assisted magnetic recording media.  相似文献   

11.
A thin film of dilute Fe (0.008)-doped Sb0.95Se0.05 alloy was grown on silicon substrate using the thermal evaporation technique. This film was irradiated with swift heavy ions (SHIs) Ag+15 having 200?MeV energy at ion fluences of 1?×?1012 and 5?×?1012 ions per cm2, respectively. The thickness of the thin film was ~500?nm. We study the effect of irradiation on structural, electrical, surface morphology and magnetic properties of this film using grazing angle XRD (GAXRD), DC resistivity, atomic force microscopy (AFM) and magnetic force microscopy (MFM), respectively. GAXRD suggests that no significant change is observed in this system due to SHI irradiation. The average crystallite size increases with fluence, whereas the AFM image shows the rms roughness decreases due to irradiation with respect to the un-irradiated thin film. The MFM image shows that the magnetic interaction in irradiated film decreases due to the irradiation effect. Although the un-irradiated sample shows metal to semiconducting transition, but after irradiation with fluence of 5?×?1012 ions per cm2, the sharpness of the metal to semiconducting phase transition is observed to increase dramatically at ~300?K. This characteristic of the thin film makes it a promising candidate for an electrical switching device after irradiation.  相似文献   

12.
李正华  李翔 《物理学报》2014,63(17):178503-178503
近年来磁力显微镜(magnetic force microscopy,MFM)对动态磁场信号的测量与分析由于其特殊的工业要求和重要用途而受到广泛关注,本文旨在利用交变磁力对磁性探针的周期性调制发展一种交变力磁力显微镜技术,为磁信息存储工业等重要领域关键技术的发展提供新型的有力的工具.与目前标准MFM采用的设计思路不同,本文的关键在于合理利用MFM频率调制机理,优化设计MFM磁性探针,并且引入动态信号处理模块,实现对交变磁场信号的MFM成像.为达到这些目的,需要从理论上研究MFM探针的频率调制机理,并由实验上设计出动态信号提取模块,二者相辅结合优化设计出具有动态信号测试和分析能力的交变力磁力显微镜技术,由此来测量和解释纳米尺度磁畴结构.  相似文献   

13.
Magnetization reversal mechanism in nanostructures composed of exchange coupled bi-layers with in-plane and perpendicular anisotropy was investigated. Micromagnetic simulation was carried out for bit-patterned media with areal density of 5 Tb/in2, as example. Magnetization of thermally stable recorded bit using a single layer may not switch under write field. However, a complete and fast switching is possible with an exchange coupling to a layer with in-plane anisotropy. By adjusting the thicknesses and intrinsic properties of the two layers, the composite recording layer still can retain perpendicular anisotropy. The exchange coupled structure with dual-anisotropy can be extended to magnetic memories.  相似文献   

14.
Magnetic force microscopy (MFM) was used to investigate the magnetization reversal process in a patterned strip wire of permalloy thin film. The magnitude of the phase-shift of tapping mode MFM changed with the varying interactive magnetic force between the magnetic tip and the sample. By analyzing the change in values of the phase-shift, the behaviors of magnetization reversal of different local regions in a patterned strip wire can be quantitatively analyzed. The intensity of the phase-shift in the wider end is stronger than that in the narrower one. In contrast, due to a strong anisotropic effect, the coercive force in the narrower end (9 Oe) is larger than that in the wider one (8 Oe). Therefore, the Hc in the neck section could become strongly affected by the competition of the head-to-tail magnetic configurations in the two parts of the strip wire, and this results in a small Hc in the neck section. In addition, in a simple neck shape connection in a strip NiFe wire, a single domain configuration can be easily changed to a two single domain magnetic configuration.  相似文献   

15.
An SmCo5 alloy is a promising candidate for ultra-high density magnetic recording media because of its strong uniaxial magnetocrystalline anisotropy, whose constant, Ku, is more than 1.1×108 erg/cm3. Recently, we successfully obtained high perpendicular magnetic anisotropy for a sputter-deposited SmCo5 thin film by introducing a Cu/Ti dual underlayer. However, it is necessary to improve magnetic properties and read/write (R/W) characteristics for applying SmCo5 thin films to perpendicular magnetic recording media. In this study, we focused on reduction of magnetic domain size and change of a magnetization reversal process of SmCo5 perpendicular magnetic thin films by introducing carbon (C) atoms into the constituent Cu underlayer. The magnetic domain size became small and the ratio of coercivity (Hc) against magnetic anisotropy (Hk) which is an index of the magnetization reversal process was increased by adding C atoms. We also evaluated the R/W characteristics of SmCo5 double-layered media including C atoms. The medium noise was decreased and signal-to-noise ratio increased by introducing the C. The addition of C into the Cu underlayer is effective for changing the magnetization reversal process, reducing medium noise and increasing SNR.  相似文献   

16.
The effects of magnetic layer thickness on film structural and magnetic properties were studied systematically with emphasis on the thermal effects on thin recording media films. X-ray diffraction measurements reveal structural changes as thickness decreases, and the existence of a “Cr enriched phase” associated with the interface. The saturation magnetization Ms decreases with thickness and the thickness of the “dead layer” was found to be ∼23 Å. Systematic measurements of effective anisotropy, coercivity and saturation magnetization as functions of temperature have been carried out. Magnetic viscosity measurements reveal that thermal stability is affected not only by grain sizes but also by anisotropy reduction associated with nanostructure evolution, as the film thickness decreases.  相似文献   

17.
An algorithm for computer simulation of images obtained by magnetic force microscopy (MFM) is suggested. It is based on the Brown formalism and takes into account the shapes and the magnetic properties of the MFM tip and sample studied. The robustness and efficiency of the algorithm are tested by simulating the MFM image of a point magnetic dipole for the case where the tip is approximated by a nonmagnetic truncated cone covered by a thin uniformly magnetized layer. From the computer simulation of the MFM images of the dipole, the optimum parameters of the MFM probe are obtained.  相似文献   

18.
Magnetic force microscopy applied in magnetic data storage technology   总被引:1,自引:0,他引:1  
Microstructured thin-film elements with critical dimensions of 1 μm or less play an increasingly important role in magnetic components for information technology applications. Devices that are directly based on such microstructures are key components in magnetoelectronics for storage and sensor applications as well as modern concepts which are likely to substitute today’s hard disk drives. Basic research on magnetic materials as well as industrial applications create an increasing demand for high-resolution magnetic imaging methods. One such method is magnetic force microscopy (MFM). In spite of considerable achievements, MFM also has some serious shortcomings, which have not been overcome to date. Under normal circumstances, the method yields only qualitative information about the magnetic object and it is difficult to improve the resolution to values below 100 nm. In this paper, we will report on advanced MFM probe preparation, based on electron beam methods, and discuss the possibilities for batch fabrication of such advanced MFM tips. We show that the advanced probes allow high-resolution imaging of fine magnetic structures within thin-film permalloy elements without perturbing them. Additionally, we present high-frequency MFM measurements on a hard disk write head. Received: 2 September 2002 / Accepted: 2 September 2002 / Published online: 5 March 2003 RID="*" ID="*"Corresponding author. Fax: +49-681/302-3790, E-mail: m.koblischka@mx.uni-saarland.de  相似文献   

19.
A simple technique for bit-patterned media was proposed to increase achievable areal recording densities beyond 2 Tbit/in2. Introduction of longitudinal magnetic anisotropy to the media indicated reduced effect of magnetostatic interaction between the dots. Recording simulation with a shielded planar pole head exhibited increased write shift margins in both down and cross track directions compared with that of the perpendicular anisotropy media. It was suggested that recording of an areal density of 2.5 Tbit/in2 would be realized with a down and cross track margins of 3.5 and 4.0 nm, respectively. Better recording performance at high areal densities is expected if suitable head could be designed.  相似文献   

20.
The structural, magnetic and transport properties measurements carried out on Co thin films deposited by electron beam evaporation on GaAs substrate as a function of layer thickness ranging from 50 Å to 1000 Å are presented here. Structural measurements show the film to be amorphous in nature at lower thickness which becomes crystalline at higher thickness. Magnetic measurements show an increase in saturation magnetization (MS) with film thickness. MS values are found to vary from 521 emu/cm3 to 1180 emu/cm3 for thicknesses ranging from 50 Å to 1000 Å. The coercivity and saturation field value shows a systematic decrease up to 600 Å thickness and increase thereafter. Various microstructural parameters were also calculated using GIXRR technique. A clear grain growth is observed in AFM technique with film thickness and its influence on transport properties was also seen. Different surface morphology and magnetic domain structures were obtained on different thin film samples by AFM and MFM techniques, respectively. XPS measurements reveal formation of CoAs phase at the interface between Co and GaAs. All these results are discussed and interpreted in detail in this communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号