首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantum walk is one of the main tools for quantum algorithms. Defined by analogy to classical random walk, a quantum walk is a time-homogeneous quantum process on a graph. Both random and quantum walks can be defined either in continuous or discrete time. But whereas a continuous-time random walk can be obtained as the limit of a sequence of discrete-time random walks, the two types of quantum walk appear fundamentally different, owing to the need for extra degrees of freedom in the discrete-time case. In this article, I describe a precise correspondence between continuous- and discrete- time quantum walks on arbitrary graphs. Using this correspondence, I show that continuous-time quantum walk can be obtained as an appropriate limit of discrete-time quantum walks. The correspondence also leads to a new technique for simulating Hamiltonian dynamics, giving efficient simulations even in cases where the Hamiltonian is not sparse. The complexity of the simulation is linear in the total evolution time, an improvement over simulations based on high-order approximations of the Lie product formula. As applications, I describe a continuous-time quantum walk algorithm for element distinctness and show how to optimally simulate continuous-time query algorithms of a certain form in the conventional quantum query model. Finally, I discuss limitations of the method for simulating Hamiltonians with negative matrix elements, and present two problems that motivate attempting to circumvent these limitations.  相似文献   

2.
We investigate the probability distribution of the quantum walk under coherence non-generating channels. We definea model called generalized classical walk with memory. Under certain conditions, generalized classical random walk withmemory can degrade into classical random walk and classical random walk with memory. Based on its various spreadingspeed, the model may be a useful tool for building algorithms. Furthermore, the model may be useful for measuring thequantumness of quantum walk. The probability distributions of quantum walks are generalized classical random walkswith memory under a class of coherence non-generating channels. Therefore, we can simulate classical random walkand classical random walk with memory by coherence non-generating channels. Also, we find that for another class ofcoherence non-generating channels, the probability distributions are influenced by the coherence in the initial state of thecoin. Nevertheless, the influence degrades as the number of steps increases. Our results could be helpful to explore therelationship between coherence and quantum walk.  相似文献   

3.
Quantum walk, the quantum counterpart of random walk, is an important model and widely studied to develop new quantum algorithms. This paper studies the relationship between the continuous-time quantum walk and the symmetry of a graph, especially that of a tree. Firstly, we prove in mathematics that the symmetry of a graph is highly related to quantum walk. Secondly, we propose an algorithm based on the continuous-time quantum walk to compute the symmetry of a tree. Our algorithm has better time complexity O(N3) than the current best algorithm. Finally, through testing three types of 10024 trees, we find that the symmetry of a tree can be found with an extremely high efficiency with the help of the continuous-time quantum walk.  相似文献   

4.
Quantum walk is a very useful tool for building quantum algorithms due to the faster spreading of probability distributions as compared to a classical random walk. Comparing the spreading of the probability distributions of a quantum walk with that of a mnemonic classical random walk on a one-dimensional infinite chain, we find that the classical random walk could have a faster spreading than that of the quantum walk conditioned on a finite number of walking steps. Quantum walk surpasses classical random walk with memory in spreading speed when the number of steps is large enough. However, in such a situation, quantum walk would seriously suffer from decoherence. Therefore, classical walk with memory may have some advantages in practical applications.  相似文献   

5.
We present an overview of two models of quantum random walk. In the first model, the discrete quantum random walk, we present the explicit solution for the recurring amplitude of the quantum random walk on a one-dimensional lattice. We also introduce a new method of solving the problem of random walk in the most general case and use it to derive the hitting amplitude for quantum random walk on the hypercube. The second is a special model based on a local interaction between neighboring spin-1/2 particles on a one-dimensional lattice. We present explicit results for the relevant quantities and obtain an upper bound on the speed of convergence to limiting probability distribution.  相似文献   

6.
In the random quantum walk, which is a quantum simulation of the classical walk, data points interacted when selecting the appropriate walk strategy by taking advantage of quantum-entanglement features; thus, the results obtained when the quantum walk is used are different from those when the classical walk is adopted. A new quantum walk clustering algorithm based on space is proposed by applying the quantum walk to clustering analysis. In this algorithm, data points are viewed as walking participants, and similar data points are clustered using the walk function in the pay-off matrix according to a certain rule. The walk process is simplified by implementing a space-combining rule. The proposed algorithm is validated by a simulation test and is proved superior to existing clustering algorithms, namely, Kmeans, PCA + Kmeans, and LDA-Km. The effects of some of the parameters in the proposed algorithm on its performance are also analyzed and discussed. Specific suggestions are provided.  相似文献   

7.
A new model of quantum random walks is introduced, on lattices as well as on finite graphs. These quantum random walks take into account the behavior of open quantum systems. They are the exact quantum analogues of classical Markov chains. We explore the “quantum trajectory” point of view on these quantum random walks, that is, we show that measuring the position of the particle after each time-step gives rise to a classical Markov chain, on the lattice times the state space of the particle. This quantum trajectory is a simulation of the master equation of the quantum random walk. The physical pertinence of such quantum random walks and the way they can be concretely realized is discussed. Differences and connections with the already well-known quantum random walks, such as the Hadamard random walk, are established.  相似文献   

8.
陈汉武  李科  赵生妹 《物理学报》2015,64(24):240301-240301
量子行走是经典随机行走在量子力学框架下的对应, 理论上可以用来解决一类无序数据库的搜索问题. 因为携带信息的量子态的扩散速度与经典相比有二次方式的增长, 所以量子行走优于经典随机行走, 量子行走的特性值得加以利用. 量子行走作为一种新发现的物理现象的数学描述, 引发了一种新的思维方式, 孕育了一种新的理论计算模型. 最新研究表明, 量子行走本身也是一种通用计算模型, 可被视为设计量子算法的高级工具, 因此受到部分计算机理论科学领域学者的关注和研究. 对于多数问题求解方案的量子算法的设计, 理论上可以只在量子行走模型下进行考虑. 基于Grover算法的相位匹配条件, 本文提出了一个新的基于量子行走的搜索算法. 理论演算表明: 一般情况下本算法的时间复杂度与Grover算法相同, 但是当搜索的目标数目多于总数的1/3时, 本算法搜索成功的概率要大于Grover算法. 本文不但利用Grover算法中相位匹配条件构造了一个新的量子行走搜索算法, 而且在本研究室原有的量子电路设计研究成果的基础上给出了该算法的量子电路表述.  相似文献   

9.
徐酉阳  周飞  陈亮  谢艺  薛鹏  冯芒 《中国物理 B》2012,21(4):40304-040304
Quantum walk is different from random walk in reversibility and interference. Observation of the reduced re- versibility in a realistic quantum walk is of scientific interest in understanding the unique quantum behavior. We propose an idea to experimentally investigate the decoherence-induced irreversibility of quantum walks with trapped ions in phase space via the average fidelity decay. By introducing two controllable decoherence sources, i.e., the phase damping channel (i.e., dephasing) and the high temperature amplitude reservoir (i.e., dissipation), in the intervals between the steps of quantum walk, we find that the high temperature amplitude reservoir shows more detrimental effects than the phase damping channel on quantum walks. Our study also shows that the average fidelity decay works better than the position variance for characterizing the transition from quantum walks to random walk. Experimental feasibility to monitor the irreversibility is justified using currently available techniques.  相似文献   

10.
The aim of this paper is to check feasibility of using the maximal-entropy random walk in algorithms finding communities in complex networks. A number of such algorithms exploit an ordinary or a biased random walk for this purpose. Their key part is a (dis)similarity matrix, according to which nodes are grouped. This study en- compasses the use of a stochastic matrix of a random walk, its mean first-passage time matrix, and a matrix of weighted paths count. We briefly indicate the connection between those quantities and propose substituting the maximal-entropy random walk for the previously chosen models. This unique random walk maximises the entropy of ensembles of paths of given length and endpoints, which results in equiprobability of those paths. We compare the performance of the selected algorithms on LFR benchmark graphs. The results show that the change in performance depends very strongly on the particular algorithm, and can lead to slight improvements as well as to significant deterioration.  相似文献   

11.
任春年  史鹏  刘凯  李文东  赵洁  顾永建* 《物理学报》2013,62(9):90301-090301
本文使用近邻耦合模型得到的解析解,分析了周期性波导中输入态对量子行走的粒子数的概率分布函数 和二阶相干性的影响.结果表明:输入态的对称性质对量子行走过程的二阶相干度有影响, 而对粒子数的概率分布函数影响不大. 关键词: 周期性光波导阵列 量子行走 二阶相干度 纠缠态  相似文献   

12.
In this paper we define a new type of decoherent quantum random walk with parameter 0≤p≤1, which becomes a unitary quantum random walk (UQRW) when p=0 and an open quantum random walk (OQRW) when p=1, respectively. We call this process a partially open quantum random walk (POQRW). We study the limiting distribution of a POQRW on Z 1 subject to decoherence on coins with n degrees of freedom. The limiting distribution of the POQRW converges to a convex combination of normal distributions, under an eigenvalue condition. A Perron-Frobenius type of theorem is established to determine whether or not a POQRW satisfies the eigenvalue condition. Moreover, we explicitly compute the limiting distributions of characteristic equations of the position probability functions when n=2 and 3.  相似文献   

13.
秦豪  薛鹏 《中国物理 B》2014,23(1):10301-010301
Quantum walks have been investigated as they have remarkably different features in contrast to classical random walks. We present a quantum walk in a one-dimensional architecture, consisting of two coins and a walker whose evolution is in both position and phase spaces alternately controlled by the two coins respectively. By analyzing the dynamics evolution of the walker in both the position and phase spaces, we observe an influence on the quantum walk in one space from that in the other space, which behaves like decoherence. We propose an implementation of the two-coin quantum walk in both position and phase spaces via cavity quantum electrodynamics(QED).  相似文献   

14.
Contrary to expectations, a measurement of the random walk in the ring laser gyro (RLG) as a functionof laser power P shows that it is not consistent with the P~-1/2 rule. In the experiment, the random walkand laser power are tested and recorded at different discharge currents. The random walk decreases withincreasing power, but with a rate much less than the theoretical value according to current literature. Inorder to solve the inconsistency above, we derive the expression for the random walk in RLGs based onlaser theory. Theoretical analysis shows that, accumulating effects of lower energy level due to its limitedlifetime lead to additional quantum noise from spontaneous emission. Results show that the random walkin the RLGs consists of two components. The former decreases with increasing power according to theP~-1/2 rule, whereas the other is power-independent. Thus far, the power-independent quantum limit hasnot appeared in the literature; therefore, the expressions for RLGs should be modified to describe the low-loss RLGs exactly, where the power-independent term takes a relatively larger proportion. The findingsare significant to the further reduction of quantum limit in low-loss RLGs.  相似文献   

15.
We look at two possible routes to classical behavior for the discrete quantum random walk on the integers: decoherence in the quantum "coin" which drives the walk, or the use of higher-dimensional (or multiple) coins to dilute the effects of interference. We use the position variance as an indicator of classical behavior and find analytical expressions for this in the long-time limit; we see that the multicoin walk retains the "quantum" quadratic growth of the variance except in the limit of a new coin for every step, while the walk with decoherence exhibits "classical" linear growth of the variance even for weak decoherence.  相似文献   

16.
In this paper we define direct product of graphs and give a recipe for obtaining probability of observing particle on vertices in the continuous-time classical and quantum random walk. In the recipe, the probability of observing particle on direct product of graph is obtained by multiplication of probability on the corresponding to sub-graphs, where this method is useful to determining probability of walk on compficated graphs. Using this method, we calculate the probability of Continuous-time classical and quantum random walks on many of finite direct product Cayley graphs (complete cycle, complete Kn, charter and n-cube). Also, we inquire that the classical state the stationary uniform distribution is reached as t→∞ but for quantum state is not always satisfied.  相似文献   

17.
We consider the limit distributions of open quantum random walks on one-dimensional lattice space. We introduce a dual process to the original quantum walk process, which is quite similar to the relation of Schrödinger-Heisenberg representation in quantum mechanics. By this, we can compute the distribution of the open quantum random walks concretely for many examples and thereby we can also obtain the limit distributions of them. In particular, it is possible to get rid of the initial state when we consider the evolution of the walk, it appears only in the last step of the computation.  相似文献   

18.
Quantum walk (QW), which is considered as the quantum counterpart of the classical random walk (CRW), is actually the quantum extension of CRW from the single-coin interpretation. The sequential unitary evolution engenders correlation between different steps in QW and leads to a non-binomial position distribution. In this paper, we propose an alternative quantum extension of CRW from the ensemble interpretation, named quantum random walk (QRW), where the walker has many unrelated coins, modeled as two-level systems, initially prepared in the same state. We calculate the walker's position distribution in QRW for different initial coin states with the coin operator chosen as Hadamard matrix. In one-dimensional case, the walker's position is the asymmetric binomial distribution. We further demonstrate that in QRW, coherence leads the walker to perform directional movement. For an initially decoherenced coin state, the walker's position distribution is exactly the same as that of CRW. Moreover, we study QRW in 2D lattice, where the coherence plays a more diversified role in the walker's position distribution.  相似文献   

19.
The concept of continuous-time random walk is generalized into the quantum approach using a completely positive map. This approach introduces in a phenomenological way the concept of disorder in the transport problem of a quantum open system. If the waiting-time of the continuous-time renewal approach is exponential we recover a semigroup for a dissipative quantum walk. Two models of non-Markovian evolution have been solved considering different types of waiting-time functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号