首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The supranova model for gamma-ray bursts (GRBs) is becoming increasingly more popular. In this scenario the GRB occurs weeks to years after a supernova explosion, and is located inside a pulsar wind bubble (PWB). Protons accelerated in the internal shocks that emit the GRB may interact with the external PWB photons producing pions which decay into approximately 10(16) eV neutrinos. A km(2) neutrino detector would observe several events per year correlated with the GRBs.  相似文献   

2.
Gamma-ray bursts (GRBs) are rare, powerful explosions displaying highly relativistic jets. It has been suggested that a significant fraction of the much more frequent core-collapse supernovae are accompanied by comparably energetic but mildly relativistic jets, which would indicate an underlying supernova-GRB connection. We calculate the neutrino spectra from the decays of pions and kaons produced in jets in supernovae, and show that the kaon contribution is dominant and provides a sharp break near 20 TeV, which is a sensitive probe of the conditions inside the jet. For a supernova at 10 Mpc, 30 events above 100 GeV are expected in a 10 s burst in the IceCube detector.  相似文献   

3.
We show that as a Type II supernova shock breaks out of its progenitor star, it becomes collisionless and may accelerate protons to energies >10 TeV. Inelastic nuclear collisions of these protons produce an approximately 1 h long flash of TeV neutrinos and 10 GeV photons, about 10 h after the thermal (10 MeV) neutrino burst from the cooling neutron star. A Galactic supernova in a red supergiant star would produce a photon and neutrino flux of approximately 10(-4) erg cm(-2) s(-1). A km(2) neutrino detector will detect approximately 100 muons, thus allowing to constrain both supernova models and neutrino properties.  相似文献   

4.
Gamma ray bursts (GRBs) have been proposed as one possible class of sources of the ultrahigh energy cosmic ray (UHECR) events observed up to energies ≳ 1020 eV. The synchrotron radiation of the highest energy protons accelerated within the GRB source should produce gamma rays up to TeV energies. Here we briefly discuss the implications on the energetics of the GRB from the point of view of the detectability of the prompt TeV γ-rays of proton-synchrotron origin in GRBs in the up-coming ICECUBE muon detector in the south pole.  相似文献   

5.
Collective neutrino flavor transformations deep inside a supernova are sensitive to the neutrino mass hierarchy even at extremely small values of theta_(13). Exploiting this effect, we show that comparison of the antineutrino signals from a galactic supernova in two megaton class water Cherenkov detectors, one of which is shadowed by Earth, will enable us to distinguish between the hierarchies if sin(2)theta_(13) < or approximately 10(-5), where long baseline neutrino experiments would be ineffectual.  相似文献   

6.
The high energy neutrino signature from proton-proton and photo-meson interactions in a supernova remnant shell ejected prior to a gamma-ray burst provides a test for the precursor supernova, or supranova, model of gamma-ray bursts. Protons in the supernova remnant shell and photons entrapped from a supernova explosion or a pulsar wind from a fast-rotating neutron star remnant provide ample targets for protons escaping the internal shocks of the gamma-ray burst to interact and produce high energy neutrinos. We calculate the expected neutrino fluxes, which can be detected by current and future experiments.  相似文献   

7.
The double conversion of neutrino chirality νL → νR → νL has been analyzed for supernova conditions, where the first stage is due to the interaction of the neutrino magnetic moment with plasma electrons and protons in the supernova core, and the second stage, due to the resonance spin flip of the neutrino in the magnetic field of the supernova envelope. It is shown that, in the presence of the neutrino magnetic moment in the range 10?13 μB < μν < 10?12 μB and a magnetic field of ~1013 G between the neutrinosphere and the shock-stagnation region, an additional energy of about 1051 erg, which is sufficient for a supernova explosion, can be injected into this region during a typical shock-stagnation time.  相似文献   

8.
We investigate the neutrino helicity flip under supernova core conditions, where the left-handed neutrinos being produced can be converted into right-handed neutrinos sterile with respect to weak interactions owing to the interaction of the magnetic moments with plasma electrons and protons. In calculating the probability for the conversion neutrino scattering by plasma components, we take into account the polarization effects attributable to both electrons and protons in the photon propagator. Based on realistic models with radial distributions and time evolution of physical parameters in a supernova core, we have obtained upper limits on the Dirac neutrino magnetic moment averaged over flavors and time from the condition that the influence of the right-handed neutrino emission on the total cooling time scale should be limited.  相似文献   

9.
贺志涵  洪居亭  闫丽萍  赵翔 《强激光与粒子束》2023,35(5):053006-1-053006-8
电磁波照射下的建筑物室内电磁环境具有混响效果,因此可采用功率平衡法(PWB)快速评估室内电磁环境水平。然而目前PWB方法中电大腔壁耦合截面(CCS)的计算模型建立在腔内电磁波不穿透腔壁的条件下,无法直接用于电磁波可穿透室内建筑物墙壁的耦合截面计算。为此,提出了一种适用于电磁波穿透有限厚度建筑物墙壁的CCS计算新模型。该模型考虑实际建筑物墙体的厚度和材料电磁特性,能够充分反映电磁波因有限厚度墙壁多次反射对室内电磁环境水平的影响。将该模型应用于室内电场水平的快速评估,预测结果与实际测量结果吻合较好,证明了所提有限厚度建筑物墙壁CCS模型的合理性。  相似文献   

10.
The spectra of protons, nuclei, and electrons accelerated by shocks in supernova remnants of different types were determined. The calculations were made using a numerical code that allows us to model spherical shock evolution and particle acceleration with allowance for the back reaction of accelerating particles on a hydrodynamic flow. The effect of Alfvenic particle drift in the amplified magnetic field in the regions upstream and downstream of the shock was taken into consideration. The maximum energy of accelerated particles is as high as ∼5 × 1018 eV for iron nuclei in Type IIb supernova remnants. The calculated spectrum and composition of cosmic rays in the interstellar medium are in good agreement with observations.  相似文献   

11.
《Physics Reports》1999,314(6):575-667
Gamma-ray bursts (GRBs) have puzzled astronomers since their accidental discovery in the late 1960s. The BATSE detector on the COMPTON-GRO satellite has been detecting one burst per day for the last six years. Its findings have revolutionized our ideas about the nature of these objects. They have shown that GRBs are at cosmological distances. This idea was accepted with difficulties at first. The recent discovery of an X-ray afterglow by the Italian/Dutch satellite BeppoSAX has led to a detection of high red-shift absorption lines in the optical afterglow of GRB970508 and in several other bursts and to the identification of host galaxies to others. This has confirmed the cosmological origin. Cosmological GRBs release ∼1051–1053 erg in a few seconds making them the most (electromagnetically) luminous objects in the Universe. The simplest, most conventional, and practically inevitable, interpretation of these observations is that GRBs result from the conversion of the kinetic energy of ultra-relativistic particles or possibly the electromagnetic energy of a Poynting flux to radiation in an optically thin region. This generic “fireball” model has also been confirmed by the afterglow observations. The “inner engine” that accelerates the relativistic flow is hidden from direct observations. Consequently, it is difficult to infer its structure directly from current observations. Recent studies show, however, that this “inner engine” is responsible for the complicated temporal structure observed in GRBs. This temporal structure and energy considerations indicates that the “inner engine” is associated with the formation of a compact object – most likely a black hole.  相似文献   

12.
Neutrinos with magnetic moment experience chirality flips while scattering off charged particles. It is known that if neutrino is a Dirac fermion, then such chirality flips lead to the production of sterile right-handed neutrinos inside the core of a star during the stellar collapse, which may facilitate the supernova explosion and modify the supernova neutrino signal. In the present paper we reexamine the production of right-handed neutrinos during the collapse using a dynamical model of the collapse. We refine the estimates of the values of the Dirac magnetic moment which are necessary to substantially alter the supernova dynamics and neutrno signal. It is argued in particular that Super-Kamiokande will be sensitive at least to μ ν Dirac = 10−13μB in case of a galactic supernova explosion. Also we briefly discuss the case of Majorana neutrino magnetic moment. It is pointed out that in the inner supernova core spin flips may quickly equilibrate electron neutrinos with nonelectron antineutrinos if μ ν Majorana ≳ 10−12μB. This may lead to various consequences for supernova physics.  相似文献   

13.
We treat high-energy neutrino production in gamma ray bursts (GRBs). Detailed calculations of photomeson neutrino production are presented for the collapsar model, where internal nonthermal synchrotron radiation is the primary target photon field, and the supranova model, where external pulsar-wind synchrotron radiation provides important additional target photons. Detection of greater, similar 10 TeV neutrinos from GRBs with Doppler factors > or approximately 200, inferred from gamma-ray observations, would support the supranova model. Detection of < or approximately 10 TeV neutrinos is possible for neutrinos formed from nuclear production. Only the most powerful bursts at fluence levels > or approximately 3 x 10(-4) erg cm(-2) offer a realistic prospect for detection of nu(mu).  相似文献   

14.
Long gamma-ray bursts (GRBs) could be emitted from rapidly spinning black-hole-torus systems, resulting from either hypernovae or black-hole-neutron-star coalescence. We show that a nonaxisymmetric torus may also radiate gravitational radiation, powered by the spin energy of the black hole. The coupling to the spin energy of the black hole operates by equivalence in poloidal topology to pulsar magnetospheres. Results calculated in the suspended-accretion state indicate that GRBs are potentially the most powerful LIGO/VIRGO burst sources in the Universe, with an expected duration of 10-15 s on a horizontal branch of 1-2 kHz in the f(f) diagram.  相似文献   

15.
While existing detectors would see a burst of many neutrinos from a Milky Way supernova, the supernova rate is only a few per century. As an alternative, we propose the detection of approximately 1 neutrino per supernova from galaxies within 10 Mpc, in which there were at least 9 core-collapse supernovae since 2002. With a future 1 Mton scale detector, this could be a faster method for measuring the supernova neutrino spectrum, which is essential for calibrating numerical models and predicting the redshifted diffuse spectrum from distant supernovae. It would also allow a > or approximately 10(4) times more precise trigger time than optical data alone for high-energy neutrinos and gravitational waves.  相似文献   

16.
The ν L ν R ν L double conversion of the Dirac neutrino helicity is analyzed under supernova conditions, in which case the first stage is due to the interaction of the neutrino magnetic moment with plasma electrons and protons in the supernova core, while the second stage is caused by a resonance neutrino-spin flip in the magnetic field of the supernova envelope. It is shown that, if the neutrino has a magnetic moment in the range 10?13 µB < µ ν < 10?12 µB and if a magnetic field of strength 1013 G exists between the neutrinosphere and the region of shock-wave stagnation, an additional energy on the order of 1051 erg, which is sufficient for stimulating a damped attenuated shock wave, can be injected in this region within the stagnation time.  相似文献   

17.
A star-quake model is proposed to understand X-ray flares of both long and short γ-ray bursts (GRBs) in a solid quark star regime. Two kinds of central engines for GRBs are available if pulsar-like stars are actually (solid) quark stars, i.e., the SNE-type GRBs and the SGR-type GRBs. It is found that a quark star could be solidified about 103 to 106 s later after its birth if the critical temperature of phase transition is a few Metga-electron-volts, and then a new source of free energy (i.e., elastic and gravitational ones, rather than rotational or magnetic energy) could be possible to power GRB X-ray flares. Supported by the National Natural Science Foundation of China (Grant Nos. 10573002, 10778611, and 10873002), the National Basic Research Program of China (Grant No. 2009CB824800), the Research Foundation of Guangxi University (Grant No. M30520), and the LCWR (Grant No. LHXZ200602)  相似文献   

18.
伽玛射线暴(简称伽玛暴)是当今天体物理领域最热门的研究领域之一。继过去几年内长时标伽玛暴(持续时标长于2秒)研究取得的不断突破,2005年以来短时标伽玛暴(短于2秒)之谜也开始被解开,短暴的双中子星并合模型第一次得到观测支持。最近还发现一个红移高达6.3的伽玛暴,这标志着伽玛暴开始成为研究高红移宇宙学的探针。本文旨在对伽玛暴研究的历史和现状作一个回顾和评述,并就爱因斯坦所创立的相对论和宇宙学具体在伽玛暴研究中的应用作一些讨论。  相似文献   

19.
The possibility of simulating the processes during supernova explosions in laboratory conditions using powerful lasers (laboratory astrophysics) is investigated. The Chandra observations of ejecta in the Cassiopeia A supernova remnant are analyzed. Based on the DIANA and NUTCY numerical codes, we have performed 1D and 2D hydrodynamic simulations of the ejecta expansion dynamics for a supernova with a mass of ~5–15 solar masses within several hundred seconds after its explosion, including an initial asymmetry. We propose a model for the explosion and expansion of ejecta that illustrates strong inhomogeneities in the distribution of material to the extent that the Fe, Si, and S material from the stellar center turns out to be ejected to the periphery, the “star turns inside out,” in agreement with observations. Based on hydrodynamic similarity criteria, we consider possible supernova-simulating laser targets that will allow one to reproduce the physical processes that take place during the explosion of an astrophysical object, such as the shock propagation through the material, the growth of hydrodynamic instabilities at the boundaries of envelopes with different densities, etc.  相似文献   

20.
We present a simple model where photons propagating in extragalactic magnetic fields can oscillate into very light axions. The oscillations may convert some of the photons, departing a distant supernova, into axions, making the supernova appear dimmer and hence more distant than it really is. Averaging over different configurations of the magnetic field we find that the dimming saturates at about one-third of the light from the supernovae at very large redshifts. This results in a luminosity distance versus redshift curve almost indistinguishable from that produced by the accelerating Universe, if the axion mass and coupling scale are m approximately 10(-16) eV, M approximately 4 x 10(11) GeV. This phenomenon may be an alternative to the accelerating Universe for explaining supernova observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号