首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this paper was to identify the type of radicals formed by γ-irradiation in powdered chlorothiazide (CTZ), hydrochlorothiazide (HCTZ), althiazide (ATZ) and trichloromethiazide (TCTZ) on the basis of analysis of their electron paramagnetic resonance spectra with enhanced resolution. In TCTZ, HCTZ and ATZ the radical was formed by abstraction of a hydrogen atom from the carbon atom C-3, and in the case of CTZ by addition of a hydrogen atom to the nitrogen atom N-4. The hyperfine structure is found. The electron densities at nitrogen atom positions in the N-C-N group in HCTZ, ATZ and TCTZ depend on a single 3-position substitution and are in line with their diuretic potency.  相似文献   

2.
氮原子掺杂石墨烯对基于石墨烯的器件和催化研究具有重要的应用价值.本文采用基于密度泛函理论的计算方法,研究了氮原子修饰的C-Bridge(碳原子吸附在石墨烯碳碳键桥位)、C-Top(碳原子吸附在石墨烯一个碳原子上方)和C7557(碳原子对吸附在石墨烯碳环上方)三种不同点缺陷类型的石墨烯物理性质.讨论不同缺陷石墨烯结构在用氮原子进行修饰前后体系的稳定性、电子结构等;计算得到了缺陷处原子的分波态密度(PDOS)图,分析了原子间的相互作用;模拟出氮原子修饰后缺陷石墨烯恒流模式的STM图像,以便和实验上得出的图像进行对比.计算结果表明,对于所选取的三种不同缺陷,氮原子能够较稳定地吸附在缺陷表面.C-Bridge和C-Top缺陷结构本身具有磁矩,经氮原子修饰后结构磁矩消失.与之相反,C7557缺陷结构本身没有磁矩,经氮原子修饰后缺陷体系带有磁矩.另外,C-Bridge和CTop两种不同缺陷结构石墨烯经过氮原子修饰后,体系几何结构变得完全一样.  相似文献   

3.
The first N‐allenyl derivative of trifluoromethanesulfonamide, N‐benzyl‐N‐(allenyl)trifluoromethanesulfonamide ( 1 ), was studied experimentally by the FT‐IR spectroscopy and theoretically at the DFT and MP2 levels of theory. The intramolecular interaction of the nitrogen atom with the triflyl and the allenyl group was studied in comparison with the analogously substituted vinyl derivatives. Compound 1 in heptane solution at 295–183 K exists as an equilibrium mixture of conformational isomers. Protonation at different basic sites in a series of reference molecules is studied theoretically. The central C2 atom of the allenyl group in 1 has the highest proton affinity, which is 16 kcal/mol higher than in the N‐vinyl analogues. The relative ability of the allenyl and vinyl groups to conjugation with an electron‐rich and electron‐deficient nitrogen atom lone electron pair is discussed. From the NBO analysis, the conjugation of the nitrogen lone electron pair with the allenyl group is much stronger than with the vinyl group. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
The effect of the electron–acceptor substituent CF3SO2 at the imine nitrogen atom on the basicity and the electron distribution in N,N‐alkylformamidines ( 1 , 2 , 3 , 4 , 5 ) was studied experimentally by the FTIR spectroscopy and theoretically at the DFT (B3LYP/6‐311+G(d,p)) level of theory, including the natural bond orbital (NBO) analysis. The calculated proton affinities of the imine nitrogen atom and the sulfonyl oxygen (PAN′ and PAO) depend on the atomic charges, the C?N′ and N′―S bond polarity and on the energy of interaction of the amine nitrogen and the oxygen lone pairs with antibonding π* and σ*‐orbitals. The basicity of the imine nitrogen atom is increased with the increase of the electron‐donating power of the substituent at the amine nitrogen atom due to stronger interaction nN → π*C?N′, but is decreased for the electron‐withdrawing groups MeSO2 and CF3SO2 at the imine nitrogen atom in spite of the increase of this conjugation. Protonation of ( 1 , 2 , 3 , 4 , 5 ) in CH2Cl2 solution in the presence of CF3SO3H occurs at the imine nitrogen atom, while the formation of hydrogen bonds with 4‐fluorophenol takes place at the sulfonyl oxygen atom, whose basicity is lower than that of N,N′‐dimethylmethanesulfonamide but higher than of N,N′‐dimethyltrifluoromethanesulfonamide. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Deep level transient spectroscopy (DLTS) was deployed to study the evolution, upon electron irradiation and hydrogenation of GaAsN grown by chemical beam epitaxy, of the main nitrogen-related nonradiative recombination center (E1), localized at 0.33 eV below the bottom edge of the conduction band of the alloy. On one hand, the electron irradiation was found to enhance the density of E1 depending on the fluence dose. On the other hand, the hydrogenation was found to passivate completely E1. Furthermore, two new lattice defects were only observed in hydrogenated GaAsN films and were suggested to be in relationship with the origin of E1. The first defect was an electron trap at average thermal activation energy of 0.41 eV below the CBM of GaAsN and was identified to be the EL5-type native defect in GaAs, originating from interstitial arsenic (Asi). The second energy level was a hole trap, newly observed at average thermal activation energy of 0.11 eV above the valence band maximum of the alloy and its origin was tentatively suggested to be in relationship with the monohydrogen–nitrogen (N–H) complex. As the possible origin of E1 was tentatively associated with the split interstitial formed from one N atom and one As atom in single V-site [(N–As)As], we strongly suggested that the new hole trap took place after the dissociation of E1 and the formation of N–H complex.  相似文献   

6.
Collisional ionization of styrene (phenylethylene), 2-vinylpyridine, and 4-vinylpyridine with metastable He*(23S) atoms were studied by means of collision-energy/electron-energy resolved two-dimensional Penning ionization electron spectroscopy. Collision energy dependence of partial ionization cross-sections, which reflects the anisotropic interactions between a He*(23S) atom and the target molecules, indicates that attractive interaction for the out-of-plane access of a He*(23S) atom to phenyl group is stronger than that for the out-of-plane access to vinyl group. Moreover, it was found for vinylpyridines that the attractive interaction around π electrons became weaker than that for styrene, and that the attractive interaction for the in-plane access to the nitrogen atom is stronger than that for out-of-plane π-directions. However, in 2-vinylpyridine, the hydrogen atom of vinyl group prevents a He*(23S) atom from approaching to the nitrogen atom along in-plane directions, and thus the attractive interactions around the nitrogen atom were shielded by the vinyl group. The experimentally observed anisotropic interactions were qualitatively supported with ab initio model interaction potential calculations between a Li (He*(23S)) atom and the target molecule. Concerning with electronic structures of investigated molecules, the assignment of Penning ionization electron spectrum for 4-vinylpyridine was discussed on the basis of different behavior of collision-energy dependence of partial ionization cross-sections, and the satellite ionization band in Penning ionization electron spectra was also reported for styrene.  相似文献   

7.
王绍青  刘全补  叶恒强 《物理学报》1998,47(11):1858-1861
利用高分辨电子显微术,对在GaP基体上由分子束外延生长六角GaN晶体薄膜中的晶体缺陷结构进行了研究.实验中发现了GaN薄膜外延生长过程中产生的一种典型早期刃型位错结构.此晶体缺陷位于一大块GaN晶粒内部,其外观类似于一段(1120)晶界.它由一条(1120)高能孤立晶界段及其两端的两个1/6[1120]不完全刃型位错组成.从大晶格失配材料之间分子束外延生长的机理上对这种缺陷结构的形成进行了解释. 关键词:  相似文献   

8.
Xiao Han 《Molecular physics》2013,111(24):3546-3555
The trapping and detection of nitrogen oxide with tungsten trioxide has become a popular research topic in recent years. Knowledge of the complete reaction mechanism for nitrogen oxide adsorption is necessary to improve detector performance. In this work, we used density functional theory (DFT) calculations to study the adsorption characteristics and electron transfer of nitrogen dioxide on an oxygen-deficient monoclinic WO3 (0 0 1) surface. We observed different reactions of NO2 on slabs with different O- and WO-terminated WO3 (0 0 1) surfaces with oxygen vacancies. Our calculations show that the bridging oxygen atom on an oxygen defect on an O-terminated WO3 (0 0 1) surface is the active site where an NO2 molecule is oxidised into nitrate and is adsorbed onto the surface. On a WO-terminated (0 0 1) surface, one of the oxygen atoms from the NO2 molecule fills the oxygen vacancy, and the resulting NO fragment is adsorbed onto a W atom. Both of these adsorption models can cause an increase in the electrical resistance of WO3. We also calculated the adsorption energies of NO2 on slabs with different oxygen-deficient WO3 surfaces.  相似文献   

9.
氮是金刚石中最常见的杂质之一, 其对金刚石的缺陷发光具有重要的影响. 氮可以与金刚石中的本征缺陷形成复合缺陷. 本文首先利用阴极射线发光照片(CL)对一个高温高压合成的氮掺杂金刚石进行表征, 发现{100}晶面为蓝色, 然后利用透射电子显微镜(TEM)对该晶面进行电子辐照及后续退火处理, 以引入本征点缺陷进而形成含氮的复合缺陷, 并利用低温光致发光光谱(PL光谱)表征其缺陷发光特性, 发现该晶面主要以氮-空位复合缺陷(NV中心)发光为主, 并伴随着较弱的503 nm发光. 关键词: 金刚石 缺陷 发光  相似文献   

10.
We report the identification of the vacancy-hydrogen complex in single crystal diamond synthesized by chemical vapor deposition. The S=1 defect is observed by electron paramagnetic resonance in the negative charge state. The hydrogen atom is bonded to one of the carbon atoms neighboring the vacancy. Unlike the analogous defect in silicon, no symmetry lowering reconstruction occurs between the three remaining carbon dangling orbitals. The very small measured hydrogen hyperfine interaction is explained by dipolar coupling between the hydrogen and the unpaired electron probability density delocalized on the three equivalent carbon neighbors.  相似文献   

11.
Zhuo-Cheng Hong 《中国物理 B》2022,31(5):57101-057101
The holes induced by ionizing radiation or carrier injection can depassivate saturated interface defects. The depassivation of these defects suggests that the deep levels associated with the defects are reactivated, affecting the performance of devices. This work simulates the depassivation reactions between holes and passivated amorphous-SiO2/Si interface defects (HPb+h→ Pb+H+). The climbing image nudged elastic band method is used to calculate the reaction curves and the barriers. In addition, the atomic charges of the initial and final structures are analyzed by the Bader charge method. It is shown that more than one hole is trapped by the defects, which is implied by the reduction in the total number of valence electrons on the active atoms. The results indicate that the depassivation of the defects by the holes actually occurs in three steps. In the first step, a hole is captured by the passivated defect, resulting in the stretching of the Si-H bond. In the second step, the defect captures one more hole, which may contribute to the breaking of the Si-H bond. The H atom is released as a proton and the Si atom is three-coordinated and positively charged. In the third step, an electron is captured by the Si atom, and the Si atom becomes neutral. In this step, a Pb-type defect is reactivated.  相似文献   

12.
The binding energies of electrons bound to nitrogen pairs in GaP are evaluated by use of the effective mass theory with a suitable model potential. The variational procedure yields (i) satisfactory agreement with previous experimental values for nitrogen pairs and (ii) no bound state for the isolated nitrogen atom. Our results suggest the electron to be bound in a potential with strain-like contributions which approaches earlier ideas of Allen.  相似文献   

13.
We study the coupling of a single nitrogen-vacancy center in diamond to a nearby single nitrogen defect at room temperature. The magnetic dipolar coupling leads to a splitting in the electron spin resonance frequency of the nitrogen-vacancy center, allowing readout of the state of a single nitrogen electron spin. At magnetic fields where the spin splitting of the two centers is the same, we observe a strong polarization of the nitrogen electron spin. The amount of polarization can be controlled by the optical excitation power. We combine the polarization and the readout in time-resolved pump-probe measurements to determine the spin relaxation time of a single nitrogen electron spin. Finally, we discuss indications for hyperfine-induced polarization of the nitrogen nuclear spin.  相似文献   

14.
Dichlorobis(1,1-dimethyl-1-p-nitrobenzylamine-2-acetimide-N) palladium(II) and dichlorobis(1,1-dimethyl-1-benzylamine-2-acetimide-N)palladium(II) were newly synthesized and the X-ray photoelectron spectra of the complexes were investigated.The values of the nitrogen 1s binding energy of these complexes and related compounds show that there is a net electron transfer from the nitrogen atom to the palladium atom in the complexes.  相似文献   

15.
KH2PO4中电子或空穴辅助下的氢缺陷反应   总被引:1,自引:0,他引:1  
刘长松 《物理》2004,33(1):9-11
研究了非线性光学晶体材料KH2 PO4(KDP)中不同带电状态的H缺陷的稳定性及其反应 .从而以清晰的物理图像描绘了KDP材料暴露在强紫外线或X射线下性能下降的原因 .研究发现 ,对于H间隙原子 ,当增加一个电子时 ,H间隙原子与主H原子发生作用 ,形成间隙H2 分子并产生一个H空位 ,而增加一个空穴时H间隙原子与临近的主O原子形成氢氧键 ,这两种带电态的H间隙原子均切断KDP材料中形成网络的氢键 ;对于H空位 ,增加一个空穴将导致形成“过氧化氢”桥结构 .这些结果在原子层次上清楚地解释了实验所建议的缺陷反应机制  相似文献   

16.
The variation of the sulphur content with sulphur fugacity was measured under isothermal conditions in the homogeneity range of Ag2+δS. A defect model was constructed from the measurements. The prevailing defects giving rise to deviations from stoichiometry are: (i) surplus silver atoms, forming a degenerate electron gas, (ii) neutral defects generated by interchanging one sulphur atom for a silver atom, and (iii) neutral sulphur vacancies. The solidus lines of Ag2+δ S were calculated from this defect model. The homogeneity range extends to both sides of the stoichiometric composition.  相似文献   

17.
The effect of intrinsic defects and isoelectronic substitutional impurities on the electronic structure of boron-nitride (BN) nanotubes is investigated using a linearized augmented cylindrical wave method and the local density functional and muffin-tin approximations for the electron potential. In this method, the electronic spectrum of a system is governed by a free movement of electrons in the interatomic space between cylindrical barriers and by a scattering of electrons from the atomic centers. Nanotubes with extended defects of substitution NB of a boron atom by a nitrogen atom and, vice versa, nitrogen by boron BN with one defect per one, two, and three unit cells are considered. It is shown that the presence of such defects significantly affects the band structure of the BN nanotubes. A defect band π(B, N) is formed in the optical gap, which reduces the width of the gap. The presence of impurities also affects the valence band: the widths of s, sp, and pπ bands change and the gap between s and sp bands is partially filled. A partial substitution of the N by P atoms leads to a decrease in the energy gap, to a separation of the Ds(P) band from the high-energy region of the s(B, N) band, as well as to the formation of the impurity (P) and *(P) bands, which form the valence-band top and conduction-band bottom in the doped system. The influence of partial substitution of N atoms by the As atom on the electronic structure of BN nanotubes is qualitatively similar to the case of phosphorus, but the optical gap becomes smaller. The optical gap of the BN tubule is virtually closed due to the effect of one Sb atom impurity per translational unit cell, in contrast to the weak indium-induced perturbation of the band structure of the BN nanotube. Introduction of the one In, Ga or Al atom per three unit cells of the (5, 5) BN nanotube results in 0.6 eV increase of the optical gap. The above effects can be detected by optical and photoelectron spectroscopy methods, as well as by measuring electrical properties of the pure and doped BN nanotubes. They can be used to design electronic devices based on BN nanotubes.  相似文献   

18.
张丽娟  胡慧芳  王志勇  陈南庭  谢能  林冰冰 《物理学报》2011,60(7):77209-077209
应用第一性原理密度泛函理论研究了单壁碳纳米管中Stone-Wales(SW)缺陷和氮掺杂情况下的电子结构和光学性质.研究发现,含氮SW缺陷单壁碳纳米管体系的总能降低,结合更稳定,且在费米能级附近出现一条半满的杂质带,并且随着氮掺杂位置的不同,掺杂能态出现显著差异.碳管的吸收和反射明显减弱且吸收峰和反射峰在低能区发生红移现象,在能量小于11eV附近均出现杂质特征峰.本文对计算结果进行了分析研究,可望为含氮SW缺陷碳管在光电材料中的应用提供理论依据. 关键词: 单壁碳纳米管 Stone-Wales缺陷 氮掺杂 光学性质  相似文献   

19.
This communication presents new data on phosphorus-containing centers in synthetic diamonds grown in the P–C system by high-pressure high-temperature (HTHP) method and annealed in the temperature range of 2,073–2,573 K. The electron paramagnetic resonance (EPR) study has shown that as-grown at 1,873 K diamonds contain single substitutional nitrogen (P1) and single substitutional phosphorus (MA1) centers. The main part of the spin density in the MA1 center locates on the carbon atom C1 separated from phosphorus by one carbon atom. HPHT annealing (7 GPa, 2,073–2,273 K) results in aggregating substitutional nitrogen and phosphorus atoms. On the first step of annealing (2,073 K) of as-grown diamonds nitrogen–phosphorus NIRIM8 (NP1) centers are created. It is supposed that nitrogen and phosphorus atoms in this center are separated by two carbons. Further temperature increasing shifts the nitrogen atom toward phosphorus and creates two new nitrogen–phosphorus centers NP2 and NP3 with the supposed structures C1–N–C–P and N–P–C1, respectively. The main part of the spin density in MA1, NIRIM8 (NP1), NP2 and NP3 is located on the carbon atom C1. Annealing these samples in the temperature range of 2,073–2,273 K has shown vanishing of NIRIM8 and increasing of NP2 and NP3 centers. HPHT annealing of diamonds at 2,573 K significantly changes the electron paramagnetic resonance (EPR) spectra: all previous nitrogen–phosphorus centers disappear and two new phosphorus centers NP4 and NP5 are created. Features of these centers are g ≈ 2.001 and high spin density located on the phosphorus atoms. The NP5 center is sensitive to X-ray irradiation and low-temperature annealing. The EPR spectra of both these centers are due to the hyperfine structure of one phosphorus atom. The structures of all phosphorus-containing centers are discussed.  相似文献   

20.
本文通过观测Ne+离子与Li原子碰撞中的发射谱,对碰撞中的电子俘获和靶激发过程进行了研究。在可见光范围给出了所观察到的各条谱线的发射截面及相应上能级的激发截面。对电子俘获过程与能量亏损和靶原了电离势的关系进行了讨论。Ne+离子能量范围为20—150keV 关键词:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号