首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A complex interaction between turbulence driven E × B zonal flow oscillations, i.e., geodesic acoustic modes (GAMs), the turbulence, and mean equilibrium flows is observed during the low to high (L-H) plasma confinement mode transition in the ASDEX Upgrade tokamak. Below the L-H threshold at low densities a limit-cycle oscillation forms with competition between the turbulence level and the GAM flow shearing. At higher densities the cycle is diminished, while in the H mode the cycle duration becomes too short to sustain the GAM, which is replaced by large amplitude broadband flow perturbations. Initially GAM amplitude increases as the H-mode transition is approached, but is then suppressed in the H mode by enhanced mean flow shear.  相似文献   

2.
A quasiperiodic Er oscillation at a frequency of <4 kHz, much lower than the geodesic-acoustic-mode frequency, with a modulation in edge turbulence preceding and following the low-to-high (L-H) confinement mode transition, has been observed for the first time in the EAST tokamak, using two toroidally separated reciprocating probes. Just prior to the L-H transition, the Er oscillation often evolves into intermittent negative Er spikes. The low-frequency Er oscillation, as well as the Er spikes, is strongly correlated with the turbulence-driven Reynolds stress, thus providing first evidence of the role of the zonal flows in the L-H transition at marginal input power. These new findings not only shed light on the underlying physics mechanism for the L-H transition, but also have significant implications for ITER operations close to the L-H transition threshold power.  相似文献   

3.
The spatiotemporal behavior of the interaction between turbulence and flows has been studied close to the L-H transition threshold conditions in the edge region (ρ≥0.7) of TJ-II plasmas. The temporal dynamics of the interaction displays an oscillatory behavior with a characteristic predator-prey relationship. The spatial evolution of this turbulence-flow oscillation pattern has been measured, showing both radial outward and inward propagation velocities of the turbulence-flow front. The results indicate that the edge shear flow linked to the L-H transition can behave either as a slowing-down, damping mechanism of outward propagating turbulent-flow oscillating structures, or as a source of inward propagating turbulence-flow events.  相似文献   

4.
Numerical calculations based on Shaing's L-H transition theory in stellarators and performed by Dahi et al. determine viscosity as a function of ion flow speed in the interchangeable module stellarator (IMS). The calculations predict local maximums in viscosity at flows corresponding to Mach numbers -2 and -10, but not elsewhere. The local peaks manifest themselves as jumps in flow speed, and as regions of high radial electric field (Er) shear. By inducting flows swept between Mach numbers ±5, an electron injection biasing probe revealed a jump at -2, but none at +2, in agreement with the numerical results. A series of flow profiles at constant bias confirmed this result. Altogether, these data agree well with the numerical calculations and provide support for Shaing's L-H transition model as applied to stellarators  相似文献   

5.
利用具有定向速度的超声分子束注入技术,研究了HL-2A装置在较低加热功率条件下实现L-H转换的等离子体放电特征,从边缘密度分布的差异比较分析了普通送气和超声分子束注入对L-H转换的影响.实验结果表明,HL-2A装置上采用超声分子束注入可直接触发L-H转换,明显降低L-H转换功率.通过对大量实验数据的分析和整理发现,利用超声分子束注入实现L-H转换的最低加热功率,比同等条件下采用普通送气实现L-H转换的最低加热功率减少约10%.  相似文献   

6.
采用流体模型理论推导了等熵平衡条件下环向转动托卡马克等离子体中带状流的色散关系。从理论上分析了环向转动对测地声模、低频带状流和声波的频率、压力和密度扰动量的影响。结果表明,环向转动对低频带状流的频率没有影响,但会使测地声模的频率逐渐增大。此外,存在环向转动时,低频带状流会具有驻波形式的压力和密度扰动量,且测地声模和声波可以沿着极向传播。而且还发现,等熵平衡可以看成是等温平衡的一种特殊情况。  相似文献   

7.
采用流体模型理论推导了等熵平衡条件下环向转动托卡马克等离子体中带状流的色散关系。从理论上分析了环向转动对测地声模、低频带状流和声波的频率、压力和密度扰动量的影响。结果表明,环向转动对低频带状流的频率没有影响,但会使测地声模的频率逐渐增大。此外,存在环向转动时,低频带状流会具有驻波形式的压力和密度扰动量,且测地声模和声波可以沿着极向传播。而且还发现,等熵平衡可以看成是等温平衡的一种特殊情况。  相似文献   

8.
能量约束时间是衡量环流器等离子体约束性能的重要参数。分析表明,在加偏压电L模过渡到类H模的过程中,如果等离子体的辐射损失功率与总损失功率之比显著变化,则扣除辐射损失的能量约束时间的增量是一种更好的衡量约束得到改善的尺度。在这种考虑之下,我们讨论HL-1等离子体偏压电极L模-类H模过的能量约束及电子热传导特性。  相似文献   

9.
The fast potential change near the separatrix is measured directly at the L-H transition by a heavy-ion-beam probe. The potential changes with two different time scales at the L-H transition triggered by a sawtooth crash: it drops at first with the time scale of 10--100 mus just after the arrival of the heat pulse due to the sawtooth crash. Then, it decreases again at a few 100 mus after the first drop at a time scale of about 200 mus.  相似文献   

10.
The transition to collisionless ion-temperature-gradient-driven plasma turbulence is considered by applying dynamical systems theory to a model with 10 degrees of freedom. The study of a four-dimensional center manifold predicts a "Dimits shift" of the threshold for turbulence due to the excitation of zonal flows and establishes (for the model) the exact value of that shift.  相似文献   

11.
 HT–6M表面加热实验中实现了H模式放电。分析了Ha 谱线,C III和O II谱线在L-H和H-L模转化过程中的变化情况,讨论了边界条件、粒子循环、杂质循环对L-H和H-L转化以及对H模的影响。  相似文献   

12.
We show that the modulational instability growth rate of zonal flows is determined directly from the quasilinear wave kinetic equation. We also demonstrate the relation between zonal-flow growth and the cross bispectrum of the high-frequency drift-wave-driven Reynolds stress and the low-frequency plasma potential by explicit calculation. Experimental measurements of the spatiotemporal evolution of the spectrum integrated bicoherence at the L-->H transition near the edge shear layer indicate a modification in the nonlinear phase coupling, which might be linked to the generation of sheared ExB flows.  相似文献   

13.
Phase coherent interactions between drift waves and zonal flows are considered. For this purpose, mode coupling equations are derived by using a two-fluid model and the guiding center drifts. The equations are then Fourier analyzed to deduce the nonlinear dispersion relations. The latter depict the excitation of zonal flows due to the ponderomotive forces of drift waves. The flute-like zonal flows with insignificant density fluctuations have faster growth rates than those which have a finite wavelength along the magnetic field direction. The relevance of our investigation to drift wave driven zonal flows in computer simulations and laboratory plasmas is discussed. Received 5 April 2002 Published online 28 June 2002  相似文献   

14.
We study collisional damping of electron zonal flows in toroidal electron temperature gradient (ETG) turbulence due to the friction between trapped and untrapped electrons. With the assumption of adiabatic ions, the collisional damping is shown to occur on fast time scales approximately 0.24epsilon(1/2)tau(e). The comparison with the growth rate of electron zonal flows indicates that the shearing by electron zonal flows is unlikely to be a robust mechanism for regulating ETG turbulence. This finding vitiates the claims of several simulation studies that have ignored the effects of collisional damping of electron zonal flows and offers a possible partial explanation of the high levels of electron thermal transport observed in the National Spherical Torus Experiment.  相似文献   

15.
The purpose of this research is to investigate the formation of zonal flows that can lead to the enhanced confinement of plasma in tokamaks. We show that zonal flows can be effectively formed by resonance triad interactions in the process of the inverse cascade. We discuss what energy sources are more effective for the formation of zonal flows.  相似文献   

16.
When Ohmically heated low-density plasmas are additionally heated by higher-harmonics ion-cyclotron-range-of frequency heating, heated by neutral beam injection, or strongly gas puffed, the intensity of zonal flows in the geodesic acoustic mode frequency range in the tokamak core plasma decreases sharply and that of low-frequency zonal flow grows drastically. This is accompanied by a damping of the drift wave propagating in the electron diamagnetic drift direction, turbulence by trapped electron mode (TEM), and the increase of the mode propagating to ion diamagnetic drift direction (ITG). In the half-radius region, TEM and high-frequency zonal flows remain intense in both OH and heated phases. ITG and low-frequency zonal flows grow in heated plasmas, suggesting a strong coupling between ITG and low-frequency zonal flow.  相似文献   

17.
3D Braginskii turbulence simulations show that the energy flux in the core/edge transition region of a tokamak is strongly modulated-locally and on average-by radially propagating, nearly coherent sinusoidal or solitary zonal flows. Their primary drive is the anomalous transport together with the Stringer-Winsor term. The transport modulation and the flow excitation are due to wave-kinetic effects studied for the first time in turbulence simulations. The flow amplitudes and the transport sensitively depend on the magnetic curvature acting on the flows, which can be influenced, e.g., by shaping the plasma cross section.  相似文献   

18.
The generation of zonal flows by flute-like interchange modes in a nonuniform magnetoplasma is considered. The guiding center particle drifts are then used to derive a system of coupled mode equations. The latter are Fourier analyzed to obtain a nonlinear dispersion relation, which exhibits the excitation of zonal flows by the ponderomotive force of the interchange modes. The growth rate of the parametrically driven zonal flows is obtained. Received 26 July 2002 Published online 24 September 2002 RID="a" ID="a"e-mail: ps@tp4.ruhr-uni-bochum.de  相似文献   

19.
《Physics letters. A》2020,384(9):126184
H-modes induced by sawtooth events can be often observed in discharges with marginal auxiliary power injection in EAST. Poloidal flow shear at the very plasma edge, increasing ∼25% up to the threshold value, is observed just before the L-H transition by means of a fast reciprocating probe array in EAST. This suddenly risen poloidal flow shear, caused by the increased turbulent driven Reynolds force, is motived by the heat pulse originally released by a sawtooth crash at the plasma core. Associated with the critical poloidal flow shear, the local turbulent decorrelation rate increases significantly. The increased turbulent decorrelation rate compensated by nonlinear energy transfer rate from the turbulence to the low-frequency shear flows, exceeding the turbulence energy input rate, is sustained for several hundred microseconds till the turbulence quench happening.  相似文献   

20.
Plasma turbulence due to small-scale entropy modes is studied with gyrokinetic simulations in a simple closed-field-line geometry, the Z pinch, in low-beta parameter regimes that are stable to ideal interchange modes. We find an enormous variation in the nonlinear dynamics and particle transport as a function of two main parameters, the density gradient and the plasma collisionality. This variation is explained in part by the damping and stability properties of spontaneously formed zonal flows in the system. As in toroidal systems, the zonal flows can lead to a strong nonlinear suppression of transport below a critical gradient that is determined by the stability of the zonal flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号