首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Based on Monte Carlo simulations, the stable magnetization configurations of an antiferromagnet on a quasiperiodic tiling are derived theoretically. The exchange coupling is assumed to decrease exponentially with the distance between magnetic moments. It is demonstrated that the superposition of geometric frustration with the quasiperiodic ordering leads to a three-dimensional noncollinear antiferromagnetic spin structure. The structure can be divided into several ordered interpenetrating magnetic supertilings of different energy and characteristic wave vector. The number and the symmetry of subtilings depend on the quasiperiodic ordering of atoms.  相似文献   

2.
李鹏飞  曹海静  郑莉  蒋秀丽 《物理学报》2013,62(15):157501-157501
利用严格对角化方法研究了Thue-Morse准周期调制下 自旋1/2反铁磁XY模型中的晶格畸变行为. 结果显示: 系统中每个格点的晶格畸变幅度介于均匀分布和无序分布之间. 对于较弱的准周期调制, 调制强度的增加有利于晶格畸变的形成. 但是, 对于较强的准周期调制, 调制强度的增加则阻碍晶格畸变的形成. 此外, 系统低能谱的能隙也明显受到准周期调制的影响. 关键词: 晶格畸变 Thue-Morse序列 准周期调制  相似文献   

3.
Using ab-initio calculations, we study the properties of the multiferroic BiFeO3 compounds in the perfect cubic perovskite lattice structure. We show that the appearance of magnetism is energetically favorable. Except the ferromagnetic structure, there are three possible antiferromagnetic arrangements, which are close in energy, and for large values of the lattice constant a G-type antiferromagnetism is the most stable magnetic order. Fe atoms are responsible for the spin magnetic moments while the values of the induced spin moments at the other sites depend strongly on the local environment of the atoms. There is a significant charge transfer from the Fe and Bi atoms towards the p-states of O atoms.  相似文献   

4.
We study the antiferromagnetic spin-1/2 Heisenberg model on a two-dimensional bipartite quasiperiodic structure, the octagonal tiling, the aperiodic equivalent of the square lattice for periodic systems. An approximate block spin renormalization scheme is described for this problem. The ground state energy and local staggered magnetizations for this system are calculated and compared with the results of a recent quantum Monte Carlo calculation for the tiling. It is conjectured that the ground state energy is exactly equal to that of the quantum antiferromagnet on the square lattice.  相似文献   

5.
First-principles calculations using the Korringa-Kohn-Rostocker method and the Coherent-Potential Approximation for Fe-Ni, Fe-Ni-Co and Fe-Pt alloys show that several features are responsible for the Invar anomalies. Atomic short range ordering in the alloys is responsible for the appearance of antiferromagnetic and non-colinear magnetic moments. The antiferromagnetic contributions are responsible for two effects, the negative anharmonicity due to the tendency of the alloys to have a smaller lattice constant, as well as the tendency to have a larger lattice constant because of additional density of states of antibonding majority-spin orbitals at the Fermi level, which simultaneously stabilizes the antiferromagnetic moments.  相似文献   

6.
The ground state of an array of magnetic particles (magnetic dots), which are ordered in a square 2D lattice and whose magnetic moment is perpendicular to the lattice plane, in the presence of an external magnetic field has been analyzed. Such a model is applicable for sufficiently small dots with perpendicular anisotropy that are in a single-domain state and for dots in a strongly inhomogeneous vortex state whose magnetic moment is determined by the vortex core. For the magnetic field perpendicular to the system plane, the entire set of the states has been analyzed from the chessboard antiferromagnetic order of magnetic moments in low fields to the saturated state of the system with the parallel orientations of the magnetic moments of all dots in strong fields. In the presence of the border, the destruction of the chessboard order first occurs at the edges of the system, then near the extended sections of the surface, and finally expands over the entire interior of the array. The critical field at which this simplest state is destroyed is much more weakly than the value characteristic of the ideal infinite system. In contrast to this scenario, the destruction of the saturated state with decreasing field always begins far from the borders. Despite such different behaviors, the magnetic structure in the intermediate range of fields that is obtained with both increasing and decreasing field for finite arrays strongly differs from that characteristic of the ideal infinite system. The role of simple stacking faults of the magnetic dot lattice (such as single vacancies or their clusters) in the remagnetization of the system has been analyzed. The presence of such faults is shown to give rise to the appearance of local destructions of the chessboard antiferromagnetic order at fields that are much weaker than those for an ideal lattice.  相似文献   

7.
Crystallographic and magnetic structures of Pr_6Fe_{13}Ge have been investigated by high-resolution powder neutron diffraction in the temperature range of 10-300 K. The magnetic structure consists of ferromagnetic Pr_6Fe_{13} slabs that alternate antiferromagnetically, along c, with the next Pr_6Fe_{13} slab separated by a non-magnetic Ge layer. The magnetic moments lie within the ab-planes. The propagation vector of this structure is k=(001) with respect to the conventional reciprocal lattice of the I-centred structure. However, the temperature-dependence of neutron-scattering intensity of the (110) Bragg peak, very similar to the temperature-dependent magnetization measured by SQUID magnetometer, indicates that a small c-axis ferromagnetic component should be added to the above antiferromagnetic model.  相似文献   

8.
Ivanov  B. A.  Kireev  V. E. 《JETP Letters》2010,90(12):750-753
JETP Letters - For the frustrated triangular lattice of Ising magnetic moments with an antiferromagnetic interaction, which is in a state with two sublattices, a new type of topological defects...  相似文献   

9.
Magnetic properties and electronic structure of V clusters supported on a Cu (1 1 1) substrate, have been calculated from a first principles method. We observe in general non-collinear magnetic structures that are the result of antiferromagnetic interactions on a frustrated lattice. The values of the magnetic moments range from ∼0 to 2.7 μB/atom, depending on cluster geometry.  相似文献   

10.
The periodic Anderson model for a lattice of magnetic ions is investigated in Hartree-Fock approximation. Attention is paid to different solutions of the self-consistency equations corresponding to ferromagnetic or antiferromagnetic ordering of the local magnetic moments. The effect of hybridization leading to reduced magnetic moments strongly depends on the position of the localizedf levels relative to the conduction band. For paramagnetic solutions with a non-integer value for thef level occupation number comparison is made with properties of intermediate valence rare earth compounds. The mean-field results for the susceptibility and specific heat agree with essential features found for these substances.Work performed within the research program of the Sonderforschungsbereich 125 Aachen-Jülich-Köln  相似文献   

11.
《Physics letters. A》2019,383(21):2451-2455
The mixed spin-(1/2, 3/2) Ising model on a decorated square lattice, which takes into account lattice vibrations of the spin-3/2 decorating magnetic ions at a quantum-mechanical level under the assumption of a perfect lattice rigidity of the spin-1/2 nodal magnetic ions, is examined via an exact mapping correspondence with the effective spin-1/2 Ising model on a square lattice. Although the considered magnetic structure is in principle unfrustrated due to bipartite nature of a decorated square lattice, the model under investigation may display anomalous spin frustration driven by a magnetoelastic coupling. It turns out that the magnetoelastic coupling is a primary cause for existence of the frustrated antiferromagnetic phases, which exhibit a peculiar coexistence of antiferromagnetic long-range order of the nodal spins with a partial disorder of the decorating spins with possible reentrant critical behavior. Under certain conditions, the anomalous spin frustration caused by the magnetoelastic coupling is responsible for unprecedented absence of spontaneous long-range order in the mixed-spin Ising model composed from half-odd-integer spins only.  相似文献   

12.
We use exact diagonalization combined with mean-field theory to investigate the phase diagram of the spin-orbital model for cubic vanadates. The spin-orbit coupling competes with Hund's exchange and triggers a novel phase, with the ordering of t(2g) orbital magnetic moments stabilized by the tilting of VO6 octahedra. It explains qualitatively spin canting and reduction of magnetization observed in YVO3. At finite temperature, an orbital instability in the C-type antiferromagnetic phase induces modulation of magnetic exchange constants even in the absence of lattice distortions. The calculated spin structure factor shows a magnon splitting at q-->=(0,0,pi / 2) due to the orbital dimerization.  相似文献   

13.
The influence of disordered medium on the magnetic structure of crystalline clusters is discussed. In a plate-like crystalline cluster with localized moments the disordered magnetic environment leads to preference of a spiral magnetic structure over the antiferromagnetic collinear ordering that would be otherwise realized. By the numerical solution of a specific model qualitative information was obtained about the influence of the exponential rate of decrease of the exchange interaction, plate thickness and degree of disorder of the medium on the magnetic structure of the cluster.  相似文献   

14.
Soft-mode theory based on Diffour model for ferroelectric subsystem, and mean-field theory as well as Heisenberg model for antiferromagnetic subsystem are utilized to investigate the magnetoelectric coupling effect in a hexagonal ferroelectromagnet, in which the ferroelectric and antiferromagnetic orders spontaneously coexist below a certain temperature. An anomaly of polarization at the magnetic transition temperature is ascribed to the effect of magnetoelectric coupling. The magnetic excitation has also been studied by spin-wave theory over the three-sublattice model. It is demonstrated that role of magnetoelectric coupling effect is not only related with the strength of magnetoelectric coupling but also special spin lattice structure. Our results show the magnetic specific heat induced by magnetic excitation experiences a suppression by the magnetoelectric coupling.  相似文献   

15.
Powder neutron diffraction and resonant x-ray scattering measurements from a single crystal have been performed to study the low-temperature state of the 2D frustrated, quantum-Heisenberg system Li2VOSiO4. Both techniques indicate a collinear antiferromagnetic ground state, with propagation vector k=(1 / 2 1 / 2 0), and magnetic moments in the a-b plane. Contrary to previous reports, the ordered moment at 1.44 K, m=0.63(3)micro(B), is very close to the value expected for the square lattice Heisenberg model ( approximately 0.6micro(B)). The magnetic order is three dimensional, with antiferromagnetic a-b layers stacked ferromagnetically along the c axis. Neither x-ray nor neutron diffraction shows evidence for a structural distortion between 1.6 and 10 K.  相似文献   

16.
Because of a ferromagnetic in-chain coupling between Co3+ ions at trigonal sites, Co2O6 chains are considered as large rigid spin moments. The antiferromagnetic Ising model on the triangular lattice is applied to describe an interchain ordering. An evolution of metastable states in a sweeping magnetic field is investigated by the single-flip technique. At the first approximation two steps in the magnetization curve and a plateau at 1/3 of the saturation magnetization are found. Four steps in magnetization are determined in high-order approximations in agreement with experimental results.  相似文献   

17.
Epitaxial nanocrystals of FeGe have been stabilized on Ge(111). The nanocrystals assume a quasi-one-dimensional shape as they grow exclusively along the <110> direction of the Ge(111) substrate, culminating in a compressed monoclinic modification of FeGe. Whereas monoclinic FeGe is antiferromagnetic in the bulk, the nanowires are surprisingly strong ferromagnets below approximately 200 K with an average magnetic moment of 0.8 microB per Fe atom. Density functional calculations indicate an unusual stabilization mechanism for the observed ferromagnetism: lattice compression destabilizes the antiferromagnetic Peierls-like ground state observed in the bulk while increased p-d hybridization suppresses the magnetic moments and stabilizes ferromagnetism.  相似文献   

18.
The electronic and magnetic structures of small FCC iron clusters in FCC Rh, Pd and Ag were calculated using the discrete variational method as a function of cluster size and lattice relaxation. It was found that unrelaxed iron clusters, remain ferromagnetic as the cluster sizes increase, while for relaxed clusters antiferromagnetism develops as the size increases depending on the host metal. For iron in Rh the magnetic structure changes from ferromagnetic to antiferromagnetic for clusters as small as 13 Fe atoms, whereas for Fe in Ag antiferromagnetism is exhibited for clusters of 24 Fe atoms. On the hand, for Fe in Pd the transition from ferromagnetism to antiferromagnetism occurs for clusters as large as 42 Fe atoms. The difference in the magnetic trends of these Fe clusters is related to the electronic properties of the underlying metallic matrix. The local d densities of states, the magnetic moments and hyperfine parameters are calculated in the ferromagnetic and the antiferromagnetic regions. In addition, the average local moment in iron-palladium alloys is calculated and compared to experimental results.  相似文献   

19.
For the frustrated triangular lattice of Ising magnetic moments with an antiferromagnetic interaction, which is in a state with two sublattices, a new type of topological defects with zero energy in the approximation of the interaction between only the nearest-neighbors has been found. These defects have a nonzero magnetic moment, and the magnetization in a low field occurs via the formation of a system of such defects. These properties are valid for a 2D superstructure in the form of a triangular lattice of single-domain magnetic particles with perpendicular anisotropy and dipole coupling.  相似文献   

20.
Using x-ray magnetic circular dichroism, we have detected the very interfacial spins that are responsible for the horizontal loop shift in three different exchange bias sandwiches, chosen because of their potential for device applications. The "pinned" uncompensated interfacial spins constitute only a fraction of a monolayer and do not rotate in an external magnetic field since they are tightly locked to the antiferromagnetic lattice. A simple extension of the Meiklejohn and Bean model is proposed to account quantitatively for the exchange bias fields in the three studied systems from the experimentally determined number of pinned moments and their sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号