首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A theoretical investigation of boson versions of the t-J and t-J(z) models on the square lattice is carried out. In the t-J(z) model, phase separation between a hole-rich and a hole-free phase occurs, at sufficiently low hole doping, for arbitrarily small values of J(z). The boson t-J model, instead, features a uniform ground state at any doping for J/t< or =1.5. No evidence of a striped ground state is found. Relevance of this study to the corresponding fermion models is discussed. Fermi statistics is found to enhance the tendency toward phase separation; in particular, phase separation is predicted, at low doping, in the fermion t-J(z) model, at all values of J(z).  相似文献   

2.
We study competition between different phases in a strongly correlated nanostructure with an edge. Making use of the self-consistent Green's function and density matrix renormalization group methods, we study a system described by the t-J(z) and t-J models on a strip of a square lattice with a linear hole density n(||). At intermediate interaction strength J/t we find edge stripelike states, reminiscent of the bulk stripes that occur at smaller J/t. We find that stripes attach to edges more readily than hole pairs, and that the edge stripes can exhibit a peculiar phase separation.  相似文献   

3.
We have calculated high temperature series to 12th order in inverse temperature for singlet superconducting correlation functions of the 2D t-J model with s, dx2-y2, and dxy symmetry pairs. Our calculations differ from previous work by removing disconnected pieces from the original four-point correlator and by treating the resulting pairing correlator as a matrix. We find the correlation length for dx2-y2 pairing grows significantly with decreasing temperature and develops a broad peak as a function of doping around delta=0.25 for T/J=0.25 at J/t=0.4. The correlation lengths for s and dxy symmetry remain small and do not display peaks. Antiferromagnetic spin correlations at low doping act to suppress the dx2-y2 and dxy superconducting correlation lengths.  相似文献   

4.
We study the single-vortex solution of the t-J model within resonating-valence-bond mean-field theory. We find two types of vortex cores, insulating and metallic, depending on the parameters of the model. The pairing order parameter near both cores have d(x(2)-y(2))+ietad(xy) symmetry. For some range of t/J the calculated tunneling spectrum of the metallic vortex core agrees qualitatively with the STM tunneling data for BSCCO.  相似文献   

5.
Evidence for strong pairing at arbitrarily small J/t is provided in a t-J model on the checkerboard lattice for a specific sign of the hopping amplitude. Destructive quantum interferences suppress Nagaoka ferromagnetism when J/t-->0 and drastically reduce coherent hole motion in the fluctuating singlet background. It is shown that, by pairing in various orbital symmetry channels, holes can benefit from a large gain of kinetic energy.  相似文献   

6.
We find that the pairing correlations on the usual t-U Hubbard ladder are significantly enhanced by the addition of a nearest-neighbor exchange interaction J. Likewise, these correlations are also enhanced for the t-J model when the on-site Coulomb interaction is reduced from infinity. Moreover, the pairing correlations are larger on a t-U-J ladder than on a t-J(eff) ladder in which J(eff) has been adjusted so that the two models have the same spin gap at half filling. This enhancement of the pairing correlations is associated with an increase in the pair-binding energy and the pair mobility in the t-U-J model and points to the importance of the charge-transfer nature of the cuprate systems.  相似文献   

7.
We study the binding of a holon and a spinon in the one-dimensional anisotropic t-J model using a Bethe-Salpeter equation approach, exact diagonalization, and density matrix renormalization group methods on chains of up to 128 sites. We find that holon-spinon binding changes dramatically as a function of anisotropy parameter alpha=J( perpendicular)/J(z): it evolves from an exactly deducible impuritylike result in the Ising limit to an exponentially shallow bound state near the isotropic case. A remarkable agreement between the theory and numerical results suggests that such a change is controlled by the corresponding evolution of the spinon energy spectrum.  相似文献   

8.
The spectra of four-point Hubbard model with one and two holes are given. The analytic results are compared with those of t-J and t-t′-J models. For one-hole case there exists a phase transition in the groundstate. The transition point is at t/U=0.054.  相似文献   

9.
The extended and standard t-J models are computationally studied on ladders and planes, with emphasis on the small J/t region. At couplings compatible with photoemission results for undoped cuprates, half-doped stripes separating pi-shifted antiferromagnetic (AF) domains are found, as in Tranquada's interpretation of neutron experiments. Our main result is that the elementary stripe "building block" resembles the properties of one hole at small J/t, with robust AF correlations across the hole induced by the local tendency of the charge to separate from the spin. This suggests that the seed of half-doped stripes already exists in the unusual properties of the insulating parent compound.  相似文献   

10.
We analyze the high-temperature behavior of the susceptibilities towards a number of possible ordered states in the t-J-V model using the high-temperature series expansion. From all diagrams with up to ten edges, reliable results are obtained down to temperatures of order J, or (with some optimism) to J/2. In the unphysical regime, tJ, these susceptibilities are small and decreasing with decreasing temperature; this suggests that the t-J model does not support high-temperature superconductivity. We also find modest evidence of a tendency toward nematic and d-density wave orders.  相似文献   

11.
Within the t-J model, the heat transport of electron-doped cobaltates is studied based on the fermionspin theory. It is shown that the temperature-dependent thermal conductivity is characterized by the low-temperature peak located at a finite temperature. The thermal conductivity increases monotonously with increasing temperature at low-temperatures T 〈 0.1 J, and then decreases with increasing temperature for higher temperatures T 〉 0.1 J, in qualitative agreement with experimental result observed from NaxCoO2.  相似文献   

12.
得到了15顶角模型A2(1)模型和超对称t–J模型反射方程的非对角解,结果发现,A2(1)模型具有三种形式的非对角解,超对称t–J模型具有一种形式的非对角解,每种形式的非对角解均含有两个解,每个非对角解中均含有三个任意参数.关于对角解也得到了一些新的形式的解.  相似文献   

13.
The Hubbard model extended by both nearest‐neighbour (nn) Coulomb correlation and nearest‐neighbour Heisenberg exchange is solved rigorously for a triangle and tetrahedron. All eigenvalues and eigenvectors are given as functions of the model parameters in a closed analytical form. For fixed electron numbers we found a multitude of level crossings, both in the ground state and in the excited states in dependence on the various model parameters. By coupling an ensemble of clusters to an electron bath we get the cluster gas model or the cluster gas approximation, if an extended array of weak‐interacting clusters is considered. The grand‐canonical potential Ω (μ, T, h) and the electron occupation N (μ, T, h) of the related cluster gases were calculated for arbitrary values (attractive and repulsive) of the three interaction constants. For the cluster gases without the additional interactions we found various steps in N (μ, T = 0, h = 0) higher than one. The reason is the degeneration of ground states differing in their electron occupation by more than one electron. For the triangular cluster gas we have one such degeneration point. For the tetrahedral cluster gas two. As a consequence, we do not find areas with one electron in the μ‐U ground‐state phase diagram of the triangular cluster gas or with one, two and five electrons in the case of the tetrahedral cluster gas. The degeneration point of the triangular cluster gas can not be destroyed by an applied magnetic field. This holds also for the lower degeneration point of the tetrahedral cluster gas. Otherwise, the upper degeneration point breaks down at a critical magnetic field hc. The dependence of hc on U shows a maximum for strong on‐site correlation. The influence of nn‐exchange and nn‐Coulomb correlation on the ground‐state phase diagrams is calculated. Whereas antiferromagnetic nn‐exchange breaks the degeneration points of the tetrahedral cluster gas partially only, a repulsive nn‐Coulomb correlation lifts the underlying degeneracies completely. Otherwise both ferromagnetic nn‐exchange and attractive nn‐Coulomb interaction stabilise the degeneration points. The consequences of the cluster gas results for extended cluster arrays are discussed.  相似文献   

14.
The structure of the low-energy electronic states in layered cobaltates is considered starting from the Mott insulating limit. We argue that the coherent part of the wave functions and the Fermi-surface topology at low doping are strongly influenced by spin-orbit coupling of the correlated electrons on the t(2g) level. An effective t-J model based on mixed spin-orbital states is radically different from that for the cuprates, and supports unconventional, pseudospin-triplet pairing.  相似文献   

15.
We investigate the effects of the next-nearest-neighbor (t') and the third-nearest-neighbor (t") hopping terms on superconductivity correlation in the 2D hole-doped extended t-J model based on the variational Monte Carlo, mean-field calculation and exact diagonalization method. Despite the diversity of the methods employed, the results all point to a consistent conclusion: While the d-wave superconductivity correlation is slightly suppressed by t' and t" in underdoped regions, it is greatly enhanced in the optimal and overdoped regions. The optimal Tc is a result of the balance of these two opposite trends.  相似文献   

16.
We present numeric results for ground state and angle resolved photoemission spectra (ARPES) for a single hole in the t-J model coupled to optical phonons. The systematic-error-free diagrammatic Monte Carlo method is employed where the Feynman graphs for the Matsubara Green function in imaginary time are summed up completely with respect to phonon variables, while magnetic variables are subjected to the noncrossing approximation. We obtain that at electron-phonon coupling constants relevant for high T(c) cuprates the polaron undergoes a self-trapping crossover to the strong-coupling limit and theoretical ARPES demonstrate features observed in experiment: A broad peak in the bottom of the spectra has momentum dependence which coincides with that of a hole in the pure t-J model.  相似文献   

17.
The Hubbard model on a cube was revisited and extended by both nearest‐neighbor Coulomb correlation W and nearest‐neighbor Heisenberg exchange J. The complete eigensystem was computed exactly for all electron occupancies and all model parameters ranging from minus infinity to plus infinity. For two electrons on the cluster the eigensystem is given in analytical form. For six electrons and infinite on‐site correlation U we determinded the groundstate and the groundstate energy of the pure Hubbard model analytically. For fixed electron numbers we found a multitude of ground state level crossings depending on the various model parameters. Furthermore the groundstates of the pure Hubbard model in dependence on a magnetic field h coupled to the spins are shown for the complete U‐h plane. The critical magnetic field, where the zero spin groundstate breaks down is given for four and six electrons. Suprisingly we found parameter regions, where the ground state spin does not depend monotonously on J in the extended model. For the cubic cluster gas, i.e. an ensemble of clusters coupled to an electron bath, we calculated the density n (μ, T, h) and the thermodynamical density of states from the grand potential. The ground states and the various spin‐spin correlation functions are studied for both attractive and repulsive values of the three interaction constants. We determined the various anomalous degeneration lines, where n (μ, T = 0, h = 0) shows steps higher than one, since in this parameter regions exotic phenomena as phase separation are to expect in extended models. For the cases where these lines end in triple points, i.e. groundstates of three different occupation numbers are degenerated, we give the related parameter values. Regarding the influence of the nn‐exchange and the nn‐Coulomb correlation onto the anomalous degeneration we find both lifting and inducing of degeneracies depending on the parameter values.  相似文献   

18.
N. S. Mondal  N. K. Ghosh 《Pramana》2010,74(6):1009-1015
An exact diagonalization calculation for a small cluster in the two-dimensional t-J model has been studied to calculate two-hole correlation. Calculations reveal dominant hole-hole correlation for holes sitting on next-nearest-neighbour (NNN) sites and critical coupling occurs at J/t = 0.8. With the increase in negative-type NNN hopping, correlation decreases at NNN sites whereas it increases at other sites. The thermodynamic properties such as entropy and specific heat are studied as functions of temperature with various NNN hopping strength. Results show that with the inclusion of negative NNN hopping, the system becomes more ordered. A qualitative transition temperature region has been estimated. It is shown that with the increase in NNN hopping strength, T c increases. Specific heat results show non-Fermi liquid-type behaviour of the system. All our calculations establish the importance of negative-type NNN hopping.  相似文献   

19.
While density matrix renormalization group calculations find stripes on doped n-leg t-J ladders, little is known about the possible formation of stripes on n-leg Hubbard ladders. Here we report results for a 7x6 Hubbard model with four holes. We find that a stripe forms for values of U/t ranging from 6 to 20. For U/t approximately 3-4, the system exhibits the domain wall feature of a stripe, but the hole density is very broadened.  相似文献   

20.
The two-dimensional t-J model on a triangular lattice is studied using high-temperature expansions. By studying the entropy and spin susceptibility, we find that the sign of the hopping integral t is very crucial. In the case of t>0, the peak of the spin susceptibility moves to the high-temperature region with hole doping, which indicates the appearance of the resonating-valence-bond state. In contrast, for t<0, the peak of the spin susceptibility disappears with hole doping and the entropy at low temperatures behaves as S=gammaT with large coefficient gamma, representing a large effective mass. This behavior is understood from the competition between Nagaoka's ferromagnetism and singlet formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号