首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Data corresponding to a KamLAND detector exposure of 0.28 kton yr has been used to search for nu;(e)'s in the energy range 8.3相似文献   

2.
A search for the relic neutrinos from all past core-collapse supernovae was conducted using 1496 days of data from the Super-Kamiokande detector. This analysis looked for electron-type antineutrinos that had produced a positron with an energy greater than 18 MeV. In the absence of a signal, 90% C.L. upper limits on the total flux were set for several theoretical models; these limits ranged from 20 to 130 macro nu(e) cm(-2) s(-1). Additionally, an upper bound of 1.2 macro nu(e) cm(-2) s(-1) was set for the supernova relic neutrino flux in the energy region E(nu)>19.3 MeV.  相似文献   

3.
KamLAND has measured the flux of nu;(e)'s from distant nuclear reactors. We find fewer nu;(e) events than expected from standard assumptions about nu;(e) propagation at the 99.95% C.L. In a 162 ton.yr exposure the ratio of the observed inverse beta-decay events to the expected number without nu;(e) disappearance is 0.611+/-0.085(stat)+/-0.041(syst) for nu;(e) energies >3.4 MeV. In the context of two-flavor neutrino oscillations with CPT invariance, all solutions to the solar neutrino problem except for the "large mixing angle" region are excluded.  相似文献   

4.
We report the direct measurement of the 7Be solar neutrino signal rate performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso. The interaction rate of the 0.862 MeV 7Be neutrinos is 49+/-3stat+/-4syst counts/(day.100 ton). The hypothesis of no oscillation for 7Be solar neutrinos is inconsistent with our measurement at the 4sigma C.L. Our result is the first direct measurement of the survival probability for solar nu(e) in the transition region between matter-enhanced and vacuum-driven oscillations. The measurement improves the experimental determination of the flux of 7Be, pp, and CNO solar nu(e), and the limit on the effective neutrino magnetic moment using solar neutrinos.  相似文献   

5.
Measuring the $ \bar \nu _e $ \bar \nu _e component of the cosmic diffuse supernova neutrino background (DSNB) is the next ambitious goal for low-energy neutrino astronomy. The largest flux is expected in the lowest accessible energy bin. However, for E ≲ 15 MeV a possible signal can be mimicked by a solar $ \bar \nu _e $ \bar \nu _e flux that originates from the usual 8B neutrinos by spin-flavor oscillations. We show that such an interpretation is possible within the allowed range of neutrino electromagnetic transition moments and solar turbulent field strengths and distributions. Therefore, an unambiguous detection of the DSNB requires a significant number of events at E ≳ 15 MeV.  相似文献   

6.
We observed, for the first time, solar neutrinos in the 1.0-1.5 MeV energy range. We determined the rate of pep solar neutrino interactions in Borexino to be 3.1±0.6{stat}±0.3{syst} counts/(day·100 ton). Assuming the pep neutrino flux predicted by the standard solar model, we obtained a constraint on the CNO solar neutrino interaction rate of <7.9 counts/(day·100 ton) (95% C.L.). The absence of the solar neutrino signal is disfavored at 99.97% C.L., while the absence of the pep signal is disfavored at 98% C.L. The necessary sensitivity was achieved by adopting data analysis techniques for the rejection of cosmogenic {11}C, the dominant background in the 1-2 MeV region. Assuming the Mikheyev-Smirnov-Wolfenstein large mixing angle solution to solar neutrino oscillations, these values correspond to solar neutrino fluxes of (1.6±0.3)×10{8} cm{-2}?s^{-1} and <7.7×10{8} cm{-2}?s{-1} (95% C.L.), respectively, in agreement with both the high and low metallicity standard solar models. These results represent the first direct evidence of the pep neutrino signal and the strongest constraint of the CNO solar neutrino flux to date.  相似文献   

7.
The Sudbury Neutrino Observatory (SNO) has measured day and night solar neutrino energy spectra and rates. For charged current events, assuming an undistorted 8B spectrum, the night minus day rate is 14.0%+/-6.3%(+1.5%)(-1.4%) of the average rate. If the total flux of active neutrinos is additionally constrained to have no asymmetry, the nu(e) asymmetry is found to be 7.0%+/-4.9%(+1.3%)(-1.2%). A global solar neutrino analysis in terms of matter-enhanced oscillations of two active flavors strongly favors the large mixing angle solution.  相似文献   

8.
Although less than 1% of solar energy is generated in the CNO cycle, it plays a critical role in astrophysics, since this cycle is the primary source of energy in certain more massive stars and at later stages of evolution of solar-type stars. Electron neutrinos are produced in the CNO cycle reactions. These neutrinos may be detected by terrestrial neutrino detectors. Various solar models with different abundances of elements heavier than helium predict different CNO neutrino fluxes. A direct measurement of the CNO neutrino flux could help distinguish between these models and solve several other astrophysical problems. No CNO neutrinos have been detected directly thus far, and the best upper limit on their flux was set in the Borexino experiment. The work on reducing the background in the region of energies of CNO neutrinos (up to 1.74 MeV) and developing novel data analysis methods is presently under way. These efforts may help detect the CNO neutrino flux in the Borexino experiment at the level predicted by solar models.  相似文献   

9.
The Sudbury Neutrino Observatory has precisely determined the total active (nu(x)) 8B solar neutrino flux without assumptions about the energy dependence of the nu(e) survival probability. The measurements were made with dissolved NaCl in heavy water to enhance the sensitivity and signature for neutral-current interactions. The flux is found to be 5.21 +/- 0.27(stat)+/-0.38(syst) x 10(6) cm(-2) s(-1), in agreement with previous measurements and standard solar models. A global analysis of these and other solar and reactor neutrino results yields Deltam(2)=7.1(+1.2)(-0.6) x 10(-5) eV(2) and theta=32.5(+2.4)(-2.3) degrees. Maximal mixing is rejected at the equivalent of 5.4 standard deviations.  相似文献   

10.
A search for a nonzero neutrino magnetic moment has been conducted using 1496 live days of solar neutrino data from Super-Kamiokande-I. Specifically, we searched for distortions to the energy spectrum of recoil electrons arising from magnetic scattering due to a nonzero neutrino magnetic moment. In the absence of a clear signal, we found micro(nu)相似文献   

11.
We discuss the impact of different solar neutrino data on the spin-flavor-precession (SFP) mechanism of neutrino conversion. We find that, although detailed solar rates and spectra allow the SFP solution as a subleading effect, the recent KamLAND constraint on the solar antineutrino flux places stronger constraints on this mechanism. Moreover, we show that for the case of random magnetic fields inside the Sun, one obtains a more stringent constraint on the neutrino magnetic moment down to the level of mu(nu)< or = few x 10(-12)mu(B), similar to bounds obtained from star cooling.  相似文献   

12.
We present results of a study of neutrino oscillation based on a 766 ton/year exposure of KamLAND to reactor antineutrinos. We observe 258 nu (e) candidate events with energies above 3.4 MeV compared to 365.2+/-23.7 events expected in the absence of neutrino oscillation. Accounting for 17.8+/-7.3 expected background events, the statistical significance for reactor nu (e) disappearance is 99.998%. The observed energy spectrum disagrees with the expected spectral shape in the absence of neutrino oscillation at 99.6% significance and prefers the distortion expected from nu (e) oscillation effects. A two-neutrino oscillation analysis of the KamLAND data gives Deltam(2)=7.9(+0.6)(-0.5)x10(-5) eV(2). A global analysis of data from KamLAND and solar-neutrino experiments yields Deltam(2)=7.9(+0.6)(-0.5)x10(-5) eV(2) and tan((2)theta=0.40(+0.10)(-0.07), the most precise determination to date.  相似文献   

13.
Observations of neutral-current nu interactions on deuterium in the Sudbury Neutrino Observatory are reported. Using the neutral current (NC), elastic scattering, and charged current reactions and assuming the standard 8B shape, the nu(e) component of the 8B solar flux is phis(e) = 1.76(+0.05)(-0.05)(stat)(+0.09)(-0.09)(syst) x 10(6) cm(-2) s(-1) for a kinetic energy threshold of 5 MeV. The non-nu(e) component is phi(mu)(tau) = 3.41(+0.45)(-0.45)(stat)(+0.48)(-0.45)(syst) x 10(6) cm(-2) s(-1), 5.3sigma greater than zero, providing strong evidence for solar nu(e) flavor transformation. The total flux measured with the NC reaction is phi(NC) = 5.09(+0.44)(-0.43)(stat)(+0.46)(-0.43)(syst) x 10(6) cm(-2) s(-1), consistent with solar models.  相似文献   

14.
Electron antineutrino interactions above the inverse beta decay energy of protons (Eν̄e>1.8 MeV) were looked for with the Borexino counting test facility (CTF). One candidate event survived after rejection of background, which included muon-induced neutrons and random coincidences. An upper limit on the solar ν̄e flux, assumed having the 8B solar neutrino energy spectrum, of 1.1×105 cm-2 s-1 (90% C.L.) was set with a 7.8 ton × year exposure. This upper limit corresponds to a solar neutrino transition probability, νe→ν̄e, of 0.02 (90% C.L.). Predictions for antineutrino detection with Borexino, including geoneutrinos, are discussed on the basis of background measurements performed with the CTF. PACS 13.15.+g, 14.60.St, 13.40.Em, 96.60.Hv, 96.60.qd, 23.40.Bw  相似文献   

15.
We constrain energy spectra of supernova neutrinos through the avoidance of an overproduction of the 11B abundance during Galactic chemical evolution. In supernova nucleosynthesis calculations with a parametrized neutrino spectrum as a function of temperature of nu(mu,tau) and nu(mu,tau) and total neutrino energy, we find a strong neutrino temperature dependence of the 11B yield. When the yield is combined with observed abundances, the acceptable range of the nu(mu,tau) and nu(mu,tau) temperature is found to be 4.8 to 6.6 MeV. Nonzero neutrino chemical potentials would reduce this temperature range by about 10% for a degeneracy parameter eta(nu) = mu(nu)/kT(nu) smaller than 3.  相似文献   

16.
We performed an improved search for nu(mu) --> nu(e) oscillation with the KEK to Kamioka (K2K) long-baseline neutrino oscillation experiment, using the full data sample of 9.2 x 10(19) protons on target. No evidence for a nu(e) appearance signal was found, and we set bounds on the nu(mu) --> nu(e) oscillation parameters. At Deltam(2)=2.8 x 10(-3) eV(2), the best-fit value of the K2Knu(mu) disappearance analysis, we set an upper limit of sin(2)2theta(mue) < 0.13 at a 90% confidence level.  相似文献   

17.
The observed excess of high-energy cosmic rays from the Galactic plane in the energy range around 10(18) eV may be explained by neutron primaries generated in the photodissociation of heavy nuclei. In this scenario, lower-energy neutrons decay before reaching the Earth and produce a detectable flux in a 1 km(3) neutrino telescope. The initial flavor composition of the neutrino flux, phi(nu(e)):phi(nu(mu)):phi(nu(tau))=1:0:0, permits a combined nu(mu)/nu(tau) appearance and nu(e) disappearance experiment. The observable flux ratio phi(nu(mu))/phi(nu(e)+nu(tau) at Earth depends on the 13 mixing angle theta(13) and the leptonic CP phase delta(CP), thus opening a new way to measure these two quantities.  相似文献   

18.
We observe a net beam excess of 8.7+/-6.3(stat)+/-2.4(syst) events, above 160 MeV, resulting from the charged-current reaction of nu(micro) and/or nu;(mu) on C and H in the LSND detector. No beam-related muon background is expected in this energy regime. Within an analysis framework of pi(0)-->nu(mu)nu;(mu), we set a direct upper limit for this branching ratio of Gamma(pi(0)-->nu(mu)nu;(mu))/Gamma(pi(0)-->all)<1.6 x 10(-6) at 90% confidence level.  相似文献   

19.
Discrete Gamow-Teller (GT) transitions 176Yb-->176Lu at low excitation energies have been measured via the ( 3He,t) reaction at 450 MeV and at 0 degrees. For 176Yb, two low-lying states are observed, setting low thresholds Q(nu) = 301 and 445 keV for neutrino ( nu) capture. Capture rates estimated from the measured GT strengths, the simple two-state excitation structure, and the low Q(nu) in Yb-Lu indicate that Yb-based nu detectors are well suited for a direct measurement of the sub-MeV solar electron-neutrino ( nu(e)) spectrum including pp neutrinos.  相似文献   

20.
《Physics letters. [Part B]》1987,195(3):331-336
We examine the effects of resonant neutrino oscillations, proposed as a solution to the solar neutrino puzzle, on the neutrino signature of a Type II supernova. We find that, for parameters corresponding to an adiabatic conversion of most of the 8B neutrino flux, the supernova neutrino signal in a water-Čerenkov detector is altered in the following way: (1) The isotropic-to-directional event ratio increases; (2) The short time scale neutronization burst signal decreases by a factor 7, perhaps rendering it unobservable. Detection of these changes would allow one to distinguish between neutrino oscillations and solar model alterations as solutions to the solar neutrino problem. We also note that mixing of the higher energy νμ and νr's to νe's will enhance detection of the thermally produced ν-flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号