首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New short-range order data are presented for equilibrium and undercooled liquids of Ti and Ni. These were obtained from in situ synchrotron x-ray diffraction measurements of electrostatically levitated droplets. While the short-range order of liquid Ni is icosahedral, consistent with Frank's hypothesis, significantly distorted icosahedral order is observed in liquid Ti. This is the first experimental observation of distorted icosahedral short-range order in any liquid, although this has been predicted by theoretical studies on atomic clusters.  相似文献   

2.
It has been suggested that icosahedral short-range order (SRO) occurs in deeply undercooled melts of pure metallic elements. We report results of first-principles molecular dynamics simulations for stable and undercooled zirconium liquids. Our results emphasize the occurrence of a local order more complex than the icosahedral one. For stable liquid, the local order is interpreted on the basis of a competition between a polytetrahedral SRO and a bcc-type SRO. We also demonstrate that a bcc-type SRO increases with the degree of undercooling.  相似文献   

3.
通过分子动力学模拟研究了金属钴和铁熔体从普通液态到过冷液态普通微观结构的性质.所计算两体分布函数与可获得的实验结果基本一致,从普通液态到过冷液态的局域结构中的原子配位数为11和12的分布几率随着温度的降低而变小,而原子的配位数大于12的分布几率反而增加,角分布函数位于55.有一个明显的峰,位于110°有一个宽展的峰,位于150°有一个肩膀,表明金属钴和铁熔体的微观局域结构要比规则的二十面体团簇的结构复杂得多.我们的模拟结果表明金属熔体中的二十面体短程序随着温度的降低而增加,并在过冷液态中而占优势.  相似文献   

4.
Icosahedral short-range order in deeply undercooled metallic melts   总被引:1,自引:0,他引:1  
Experimental evidence of icosahedral short-range order in stable and deeply undercooled melts of pure metallic elements is obtained using the combination of electromagnetic levitation with neutron scattering. This icosahedral short-range order is shown to occur in the bulk metallic melt independently of the system investigated. It strongly increases with the degree of undercooling.  相似文献   

5.
We have characterized the short-range order in the liquid and undercooled states of Au-Si alloy at the eutectic composition using molecular dynamics simulations. The interactions are described via a modified embedded-atom model refined to take into account the liquid properties. For the eutectic liquid, the local structure is characterized by a strong Au-Si affinity, namely a well-pronounced chemical short-range order which leads to the slowing down of the formation of icosahedral local motifs in the undercooled regime. Moreover we discuss the influence of this peculiar local structure on the dynamic and thermodynamic properties of the liquid phase and compare our results with available experimental data.  相似文献   

6.
The stability of undercooled simple metals is still an intriguing problem for materials science and technology. There is not consensus on the role played by the icosahedral short range order during undercooling. The scenario is even less clear for undercooled metals under external pressure. Extensive molecular dynamics simulations, based on an empirical tight-binding interatomic potential, are performed to explain experimental results recently obtained on liquid and undercooled liquid copper. A common neighbour analysis is used to fully characterize the icosahedral short range order in both undercooled and liquid systems. Moreover, the effect of pressure on icosahedral short range order, is addressed and rationalized. External pressure increases the probability to find atomic bonds with icosahedral symmetry both in the liquid and in the undercooled copper.  相似文献   

7.
李茂枝 《物理学报》2017,66(17):176107-176107
简要回顾了从20世纪30年代至今,有关非晶合金及合金液体的局域结构五次对称性的实验、理论和模拟研究.在简单液体的早期研究中,人们已经意识到五次对称性在简单液体的无序结构、过冷和晶化等起着重要作用,二十面体短程序作为五次对称性的典型代表受到了广泛关注.自从Frank提出简单液体中二十面体短程序的结构单元,大量的理论和实验研究已经明确在简单液体、合金液体和金属玻璃中存在局域五次对称性,并且建立了局域五次对称性与合金液体复杂动力学行为、玻璃转变、液体-液体相变以及非晶合金的形变等统一的定量描述和物理图像,表明了局域五次对称性作为结构参量的简单、普遍和有效性.  相似文献   

8.
The local structure of simple liquids is significantly different from that of corresponding crystalline systems. Signatures of fivefold local ordering have been previously found, but current knowledge is limited to pair distribution, leaving considerable uncertainty in the determination of the geometrical structure. New x-ray absorption experimental results on liquid and undercooled liquid copper, interpreted using an advanced data-analysis method based on multiple-scattering simulations, are shown to contain direct information on triplet correlations making feasible a reliable determination of the bond-angle distribution and fraction of nearly icosahedral configurations in liquids.  相似文献   

9.
张景祥  李辉  张洁  宋西贵  边秀房 《中国物理 B》2009,18(11):4949-4954
This paper reports that anomalous local order in liquid and glassy AlFeCe alloy has been detected by x-ray diffraction measurements. The addition of the element Ce has a great effect on this local structural order. The element Ce favours interpenetration of the icosahedra by sharing a common face and edges. It argues that frustration between this short-range order and the long-range crystalline order controls the glass-forming ability of these liquids. The obtained results suggest that a system having a stronger tendency to show local icosahedral order should be a better glass-former. This scenario also naturally explains the close relationship between the local icosahedral order in a liquid, glass-forming ability, and the nucleation barrier. Such topological local order has also been analysed directly using the reverse Monte Carlo method. It also estimated the fraction of local ordered and disordered structural units in a glassy AlFeCe alloy.  相似文献   

10.
M. Celtek  S. Sengul 《哲学杂志》2018,98(9):783-802
In the present work, the glass formation process and structural properties of Zr50Cu50-xCox (0 ≤ x ≤ 50) bulk metallic glasses were investigated by a molecular dynamics simulation with the many body tight-binding potentials. The evolution of structure and glass formation process with temperature were discussed using the coordination number, the radial distribution functions, the volume–temperature curve, icosahedral short-range order, glass transition temperature, Voronoi analysis, Honeycutt–Andersen pair analysis technique and the distribution of bond–angles. Results indicate that adding Co causes similar responses on the nature of the Zr50Cu50-xCox (0 ≤ x ≤ 50) alloys except for higher glass transition temperature and ideal icosahedral type ordered local atomic environment. Also, the differences of the atomic radii play the key role in influencing the atomic structure of these alloys. Both Cu and Co atoms play a significant role in deciding the chemical and topological short-range orders of the Zr50Cu50-xCox ternary liquids and amorphous alloys. The glass-forming ability of these alloys is supported by the experimental observations reported in the literature up to now.  相似文献   

11.
The structural evolution and atomic structure of the Ti50Cu50 compound have been investigated by means of molecular dynamics simulation using the generalized embedded-atom model (GEAM) potential. Gibbs free energy calculation manifests the large driving force of undercooled Ti50Cu50 for crystallization and thus the poor glass-forming ability. Radial distribution functions (RDFs) within the temperature range from 2000 K to 300 K are analyzed and reveal the increasing degree of short-range order and reducing periodic length between peaks on cooling. Atomic arrangement is characterized by the Voronoi tessellation method, showing that the frequency of icosahedral configurations is most sensitive to temperature and grows upon quenching while that of the others remains relatively stable. The thermal behavior of the structure factors follows the Debye model up to the supercooled liquid temperature. The structural investigation of amorphous Ti50Cu50 demonstrates that there exist a variety of polyhedral configurations in Ti50Cu50 amorphous alloy, where icosahedral and bcc clusters are the major types. Due to the existence of bcc clusters and the other distorted polyhedra other than full icosahedra, the structural analysis reconfirms the inference from the Gibbs free energy calculation.  相似文献   

12.
We report the suction casting of Zr65Cu27Ti8 bulk metallic glasses with diameters up to 1?mm. While the substitution of Ti for Cu increases the glass forming ability significantly, the onset crystallization temperature and the width of the supercooled liquid region decrease. This decrease is due to the appearance of an icosahedral quasicrystal phase, which crystallises from the glass at a lower temperature than the Zr2Cu devitrification product in the Zr65Cu35 glasses. Based on the results of recent structural studies of undercooled Ti/Zr-based alloys, this likely reflects the formation of icosahedral order in the undercooled liquid, which increases the nucleation barrier for the Zr2Cu phase during the quench, making glass formation easier.  相似文献   

13.
The resistivity behavior of undercooled liquid Cu–Ni and Cu–Co alloys had been studied in the contactless method, to probe the structure transition in undercooled melts during the cooling process. Over the entire concentration range, linear behavior of resistivity with temperature was obtained in liquid and undercooled liquid Cu–Ni system. It implied that the formation of icosahedral order might not influence the electron scattering in undercooled liquid Cu–Ni alloys. Similar results were obtained in Cu–Co system in the vicinity of liquidus temperature. A turning point was obvious in temperature coefficient of resistivity for undercooled liquid Cu–Co alloys around the bimodal line, which was interpreted to be responsible for metastable liquid–liquid phase separation. During liquid phase separation process, resistivity decreased and the temperature coefficient of resistivity was larger than that of homogeneous melts. In combination with transmission electron microscopy and scanning electron microscope studies on the as-solidified microstructure, this was interpreted as the formation of egg-type structure and concentration change in Cu-rich and Co-rich phases. The mechanism controlling the separation and droplets motion was also discussed in undercooled liquid Cu–Co system.  相似文献   

14.
R. Bonneville 《Physica A》1980,102(1):49-69
In the molecular field approximation, one derives an expression of the static dielectric constant of an isotropic liquid involving renormalized expressions of the molecular dipole and polarizability. The long-range moderate attractive forces are treated as a perturbation of the short-range intense repulsions, so that two parameters λ and η describe the short-range correlations and the long-range order, respectively. On the condition of a superposition hypothesis, the model is compared in its hard-sphere limit (λ=0, η=1) with the available experimental data about a series of organic liquids and with Onsager's continuum approach.  相似文献   

15.
The discovery of icosahedral quasicrystals five years ago, has challenged the validity of the well-known conjecture that the ground state of a system of particles interacting via short-range forces is always crystalline at absolute zero. We have calculated the classical cohesive energies and pair distribution functions of a large class of monatomic icosahedral structures, interacting via the Lennard-Jones (LJ) and the Square-Well (SW) potentials. For the SW potential, we have found an icosahedral phase, with lower enthalpy than the BCC, FCC and HCP phases. The phase is robust with respect to small changes in the potential, pressure and even structure, and transforms to the BCC phase above a critical pressure. Our results suggest that icosahedral ground states may indeed be possible for a class of potentials with Friedel-like oscillations, whose extremal positions satisfy geometric constraints favoring icosahedral order.  相似文献   

16.
We present a molecular dynamics simulation for liquid Al during the rapid quenching under different pressures. The pair analysis technique and the probabilities of bond energy distribution of inherent structures have been employed to reveal the structural characteristics of liquid and glassy Al. During the liquid-glass quenching process, the bond pairs representing the degree of icosahedral short-range ordering are largely enhanced, whereas the bond pairs being related to fcc and hcp crystalline order increase at first then decrease. The pressure effect on various bond pairs for liquids is larger than for glasses. Two kinds of bond pairs, which exist in large proportion in the amorphous, are demonstrated for the transformation from 1431 to 1541 bond pairs when decreasing temperature or increasing pressure below glass transformation temperature (Tg). Although the sum of these two pairs keeps unchanged below Tg, the role of them is like a bridge which links another two different kinds of bonded pairs, icosahedral ordering and crystalline ordering pairs.  相似文献   

17.
The structural factors of amorphous CuHf alloys at different temperatures are determined by using a high temperature x-ray diffractometer. It is found that not only the short-range order structure but also the medium-range order structure exists in amorphous CuHf alloys. The dynamic viscosities of CuHf alloy melts are measured by a torsional oscillation viscometer. The fragility of superheated melts of CuHf alloys is calculated based on the viscosity data. The experimental results show that the glass-forming ability of the CuHf alloys is closely related to the fragility of their superheated melt. The relationship between the medium-range order structures and the fragility of superheated melts has also been established in amorphous CuHf alloys. In contrast to the fragility of supercooled liquids, the fragility of superheated liquids promises a better approach to reflecting the dynamics of glass forming liquids.  相似文献   

18.
We have characterized the icosahedral short-range order in amorphous solids using local environment probes. Such topological local order is pronounced even in an amorphous alloy that does not form quasicrystalline phases upon crystallization, as demonstrated by the extended x-ray absorption fine structure and x-ray absorption near-edge structure of a Ni-Ag amorphous alloy analyzed through reverse Monte Carlo simulations.  相似文献   

19.
It is analyzed how Debye-Waller factor measurements by Mössbauer experiments can yield information on the dynamics of undercooled liquids which is related to the formation of a glassy state.  相似文献   

20.
任景莉  于利萍  张李盈 《物理学报》2017,66(17):176401-176401
非晶态材料有着复杂的原子结构(短程有序、长程无序)和特殊的物理性质,其临界现象和相变问题一直受到学术界关注.非晶合金,又称为金属玻璃,是一种新型的非晶态材料,具有很高的强度和优异的弹性.从微观的角度来看,非晶合金可以看作是一个多粒子系统.临界现象的研究对认识和理解多粒子系统之间的相互作用有深刻的意义.本文主要讨论非晶合金中的临界现象,包括非晶合金从制备过程、微观结构到宏观的力学性能以及磁性方面存在的临界现象,并分析这些临界现象之间的内在联系,进而深入理解非晶合金的微观结构对其宏观性质的影响.这为认识非晶合金的形成本质,提高服役可靠性,探索具有实际应用价值的非晶合金提供理论依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号