首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We propose a scheme to engineer a nonlocal two-qubit phase gate between two remote quantum-dot spins in cavities. As the effect of cavity decay is considered and strong coupling condition is not used, the scheme has good adaptability. Along with single qubit operations, one can perform in principle various types of distributed quantum information processing.  相似文献   

2.
3.
We present results of quasi-phase matching (QPM) interactions in one-dimensional multilayered media consisting of layers with different χ(2) nonlinearities that interchanged by linear dispersive layers. We exploit the idea of manipulating overall group delay mismatches between the various fields in each layer by appropriate choosing of the dispersive parameters and consider both multiple optical QPM interactions and preparation of pure photon states in application to quantum gates.  相似文献   

4.
We show that a universal set of gates for quantum computation with optics can be quantum teleported through the use of EPR entangled states, homodyne detection, and linear optics and squeezing operations conditioned on measurement outcomes. This scheme may be used for fault-tolerant quantum computation in any optical scheme (qubit or continuous-variable). The teleportation of nondeterministic nonlinear gates employed in linear optics quantum computation is discussed.  相似文献   

5.
We demonstrate theoretically that it is possible to manipulate electron or hole spins all optically in semiconducting carbon nanotubes. The scheme that we propose is based on the spin-orbit interaction that was recently measured experimentally; we show that this interaction, together with an external magnetic field, can be used to achieve optical electron-spin state preparation with a fidelity exceeding 99%. Our results also imply that it is possible to implement coherent spin rotation and measurement using laser fields linearly polarized along the nanotube axis, as well as to convert spin qubits into time-bin photonic qubits. We expect that our findings will open up new avenues for exploring spin physics in one-dimensional systems.  相似文献   

6.
We review the progress and main challenges in implementing large-scale quantum computing by optical control of electron spins in quantum dots (QDs). Relevant systems include self-assembled QDs of III–V or II–VI compound semiconductors (such as InGaAs and CdSe), monolayer fluctuation QDs in compound semiconductor quantum wells, and impurity centres in solids, such as P-donors in silicon and nitrogen-vacancy centres in diamond. The decoherence of the electron spin qubits is discussed and various schemes for countering the decoherence problem are reviewed. We put forward designs of local nodes consisting of a few qubits which can be individually addressed and controlled. Remotely separated local nodes are connected by photonic structures (microcavities and waveguides) to form a large-scale distributed quantum system or a quantum network. The operation of the quantum network consists of optical control of a single electron spin, coupling of two spins in a local nodes, optically controlled quantum interfacing between stationary spin qubits in QDs and flying photon qubits in waveguides, rapid initialization of spin qubits and qubit-specific single-shot non-demolition quantum measurement. The rapid qubit initialization may be realized by selectively enhancing certain entropy dumping channels via phonon or photon baths. The single-shot quantum measurement may be in situ implemented through the integrated photonic network. The relevance of quantum non-demolition measurement to large-scale quantum computation is discussed. To illustrate the feasibility and demand, the resources are estimated for the benchmark problem of factorizing 15 with Shor's algorithm.  相似文献   

7.
We report on a method for single-shot readout of spin states in a semiconductor quantum dot that is robust against charge noise and can be used even when the electron temperature exceeds the energy splitting between the states. The spin states are first correlated to different charge states using a spin dependence of the tunnel rates. A subsequent fast measurement of the charge on the dot then reveals the original spin state. The method is analyzed theoretically, and compared to a previously used method. We experimentally demonstrate the method by performing readout of the two-electron spin states, achieving a single-shot visibility of more than 80%. We find very long triplet-to-singlet relaxation times (up to several milliseconds), with a strong dependence on in-plane magnetic field.  相似文献   

8.
张茜  李萌  龚旗煌  李焱 《物理学报》2019,68(10):104205-104205
量子比特在同一时刻可处于所有可能状态上的叠加特性使得量子计算机具有天然的并行计算能力,在处理某些特定问题时具有超越经典计算机的明显优势.飞秒激光直写技术因其具有单步骤高效加工真三维光波导回路的能力,在制备通用型集成光量子计算机的基本单元—量子逻辑门中发挥着越来越重要的作用.本文综述了飞秒激光直写由定向耦合器构成的光量子比特逻辑门的进展.主要包括定向耦合器的功能、构成、直写和性能表征,集成波片、哈达玛门和泡利交换门等单量子比特逻辑门、受控非门和受控相位门等两量子比特逻辑门的直写加工,并对飞秒激光加工三量子比特逻辑门进行了展望.  相似文献   

9.
It is shown that intraband absorption of circularly polarized light leads to spin polarization of the electron gas. A theory of this monopolar optical spin orientation is developed for indirect intraband transitions in bulk semiconductors and for indirect intrasubband and direct intersubband transitions in quantum wells.  相似文献   

10.
Quantum logic gates based on coherent electron transport in quantum wires   总被引:3,自引:0,他引:3  
It is shown that the universal set of quantum logic gates can be realized using solid-state quantum bits based on coherent electron transport in quantum wires. The elementary quantum bits are realized with a proper design of two quantum wires coupled through a potential barrier. Numerical simulations show that (a) a proper design of the coupling barrier allows one to realize any one-qbit rotation and (b) Coulomb interaction between two qbits of this kind allows the implementation of the CNOT gate. These systems are based on a mature technology and seem to be integrable with conventional electronics.  相似文献   

11.
唐世清  张登玉  汪新文  谢利军  高峰 《中国物理 B》2011,20(4):40308-040308
Feasible schemes for implementing quantum swap gates of both coherent-state qubits and photonic qubits are proposed using a Λ-type atomic ensemble trapped in a bimodal optical cavity. In both protocols, the decoherence from atomic spontaneous emission is negligible due to the fact that the excited states of the atoms are adiabatically eliminated under large detuning condition and the swap gates can be created in a single step. In our schemes, the required atoms-cavity interaction time decreases with the increase of the number of atoms, which is very important in view of decoherence. The experimental feasibilities of the schemes are also discussed.  相似文献   

12.
Coherent interactions between spins in quantum dots are a key requirement for quantum gates. We have performed pump-probe experiments in which pulsed lasers emitting at different photon energies manipulate two distinct subsets of electron spins within an inhomogeneous InGaAs quantum dot ensemble. The spin dynamics are monitored through their precession about an external magnetic field. These measurements demonstrate spin precession phase shifts and modulations of the magnitude of one subset of oriented spins after optical orientation of the second subset. The observations are consistent with results from a model using a Heisenberg-like interaction with μeV strength.  相似文献   

13.
We present a general technique to implement products of many qubit operators communicating via a joint harmonic oscillator degree of freedom in a quantum computer. By conditional displacements and rotations we can implement Hamiltonians which are trigonometric functions of qubit operators. With such operators we can effectively implement higher order gates such as Toffoli gates and C(n)-NOT gates, and we show that the entire Grover search algorithm can be implemented in a direct way.  相似文献   

14.
Yong-Ting Liu 《中国物理 B》2022,31(5):50303-050303
We present a self-error-rejecting multipartite entanglement purification protocol (MEPP) for N-electron-spin entangled states, resorting to the single-side cavity-spin-coupling system. Our MEPP has a high efficiency containing two steps. One is to obtain high-fidelity N-electron-spin entangled systems with error-heralded parity-check devices (PCDs) in the same parity-mode outcome of three electron-spin pairs, as well as M-electron-spin entangled subsystems (2≤M <N) in the different parity-mode outcomes of those. The other is to regain the N-electron-spin entangled systems from M-electron-spin entangled states utilizing entanglement link. Moreover, the quantum circuits of PCDs make our MEPP works faithfully, due to the practical photon-scattering deviations from the finite side leakage of the microcavity, and the limited coupling between a quantum dot and a cavity mode, converted into a failed detection in a heralded way.  相似文献   

15.
Received: 6 August 1997/Revised version: 21 October 1997  相似文献   

16.
We present a technique for manipulating the nuclear spins and the emission polarization from a single optically active quantum dot. When the quantum dot is tunnel coupled to a Fermi sea, we have discovered a natural cycle in which an electron spin is repeatedly created with resonant optical excitation. The spontaneous emission polarization and the nuclear spin polarization exhibit a bistability. For a σ(+) pump, the emission switches from σ(+) to σ(-) at a particular detuning of the laser. Simultaneously, the nuclear spin polarization switches from positive to negative. Away from the bistability, the nuclear spin polarization can be changed continuously from negative to positive, allowing precise control via the laser wavelength.  相似文献   

17.
We study a large ensemble of nuclear spins interacting with a single electron spin in a quantum dot under optical excitation and photon detection. At the two-photon resonance between the two electron-spin states, the detection of light scattering from the intermediate exciton state acts as a weak quantum measurement of the effective magnetic (Overhauser) field due to the nuclear spins. In a coherent population trapping state without light scattering, the nuclear state is projected into an eigenstate of the Overhauser field operator, and electron decoherence due to nuclear spins is suppressed: We show that this limit can be approached by adapting the driving frequencies when a photon is detected. We use a Lindblad equation to describe the driven system under photon emission and detection. Numerically, we find an increase of the electron coherence time from 5 to 500 ns after a preparation time of 10 micros.  相似文献   

18.
19.
We propose several schemes for implementing a fast two-qubit quantum gate for neutral atoms with the gate operation time much faster than the time scales associated with the external motion of the atoms in the trapping potential. In our example, the large interaction energy required to perform fast gate operations is provided by the dipole-dipole interaction of atoms excited to low-lying Rydberg states in constant electric fields. A detailed analysis of imperfections of the gate operation is given.  相似文献   

20.
《Physics letters. A》2014,378(28-29):1919-1924
We present a mechanism for quantum gates where the qubits are encoded in the population distribution of two-component ultracold atoms trapped in a species-selective triple-well potential. The gate operation is a specific application of a different design for an atomtronics transistor where inter-species interaction is used to control transport, and can be realized with either individual atoms or aggregates like Bose–Einstein condensates (BEC). We demonstrate the operational principle with a static external potential, and show feasible implementation with a smooth dynamical potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号