共查询到20条相似文献,搜索用时 30 毫秒
1.
Effect of the parallel electron current on Geodesic Acoustic Modes (GAM) in a tokamak is analyzed by kinetic theory taking into the account the ion Landau damping and diamagnetic drifts. It is shown that the electron current modeled by shifted Maxwell distribution may overcome the phase velocity threshold and ion Landau damping thus resulting in the GAM instability when the parallel electron current velocity is larger than the effective parallel GAM phase velocity Rqω. The instability occurs due to its cross term of the current with the ion diamagnetic drift. Possible applications to tokamak experiments are discussed. 相似文献
2.
Analytical approximations are used to clarify the effect of Larmour radius on rf ponderomotive forces and on poloidal flows induced by them in tokamak plasmas. The electromagnetic force is expressed as a sum of a gradient part and of a wave momentum transfer force, which is proportional to wave dissipation. The first part, called the gradient electromagnetic stress force, is combined with fluid dynamic (Reynolds) stress force, and gyroviscosity is included into viscosity force to model finite ion Larmour radius effects in the momentum response to the rf fields in plasmas. The expressions for the relative magnitude of different forces for kinetic Alfven waves and fast waves are derived. 相似文献
3.
New unstable temperature gradient driven modes in an inhomogeneous tokamak plasma are identified. These modes represent temperature gradient (ion and electron) driven modes destabilized in the short wavelength regions with k( perpendicular )rho(i,e)>1, respectively. The instability occurs due to a specific plasma response that significantly deviates from Boltzmann distribution in the regions k( perpendicular )rho(i,e)>1. 相似文献
4.
5.
6.
Effect of a minor concentration of the energetic particles on GAM spectrum in a tokamak is analyzed by drift kinetic theory taking into the account the electron current and diamagnetic drift. A novel method of Jacobi functions is applied to solve the drift kinetic equation for the energetic bounce particles in the limit of high bounce frequency in comparison with the GAM frequency. Using the Q-asymptotic of Jacobi function, it is shown that the energetic minority ions can form the continuum minimum/maximum at the NB or ICR power deposition maximum where the geodesic eigenmode may be excited. In this case, the electron current modeled by shifted Maxwell distribution overcomes the ion Landau damping threshold thus resulting in the GAM instability. 相似文献
7.
M. A. Balakina A. G. Shalashov E. D. Gospodchikov O. B. Smolyakova 《Radiophysics and Quantum Electronics》2006,49(8):617-632
Linear conversion of the ordinary wave to the extraordinary wave and then to the Bernstein wave (O-X-B conversion) in a tokamak
plasma is considered in the generalized geometric-optical approximation taking into account the relativistic effects in a
dielectric permitivity tensor. Using the T-10 tokamak as an example, it is shown that even for a relatively low plasma temperature
(about 1 keV at the plasma-column center) relativistic effects exert a notable influence on the cyclotron absorption of Bernstein
waves. Power deposition profiles for O-X-B plasma heating are determined. The emission of spontaneously excited Bernstein
waves resulting from the B-X-O conversion are considered.
__________
Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 49, No. 8, pp. 686–703, August 2006. 相似文献
8.
9.
Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas 下载免费PDF全文
Ding-Zong Zhang 《中国物理 B》2023,32(1):15201-015201
The linear behavior of the dominant unstable mode ($m=2$, $n=1$) and its high order harmonics ($m=2n$, $nge 2$) are numerically investigated in a reversed magnetic shear cylindrical plasma with two $q=2$ rational surfaces on the basis of the non-reduced magnetohydrodynamics (MHD) equations. The results show that with low beta (beta is defined as the ratio of plasma pressure to magnetic field pressure), the dominant mode is a classical double tearing mode (DTM). However, when the beta is sufficiently large, the mode is driven mainly by plasma pressure. In such a case, both the linear growth rate and mode structures are strongly affected by pressure, while almost independent of the resistivity. This means that the dominant mode undergoes a transition from DTM to pressure-driven mode with the increase of pressure, which is consistent with the experimental result in ASDEX Upgrade. The simulations also show that the distance between two rational surfaces has an important influence on the pressure needed in mode transition. The larger the distance between two rational surfaces, the larger the pressure for driving the mode transition is. Motivated by the phenomena that the high-$m$ modes may dominate over low-$m$ modes at small inter-resonance distance, the high-$m$ modes with different pressures and $q$ profiles are studied too. 相似文献
10.
采用回旋动理学方程推导得到了环向转动托卡马克等离子体中测地声模的色散关系,分析了环向转动对测地声模、低频模和声波分支的频率以及无碰撞阻尼率的影响。结果表明,测地声模的频率会随着环向转动马赫数而逐渐增大,而其无碰撞阻尼率则会随着环向转动马赫数而迅速减小。此外,低频模和声波分支的频率以及无碰撞阻尼率都会随着环向转动马赫数而逐渐减小,其中环向转动对声波分支的频率以及无碰撞阻尼率的影响非常小,基本上可以忽略。 相似文献
11.
采用回旋动理学方程推导得到了环向转动托卡马克等离子体中测地声模的色散关系,分析了环向转动对测地声模、低频模和声波分支的频率以及无碰撞阻尼率的影响.结果表明,测地声模的频率会随着环向转动马赫数而逐渐增大,而其无碰撞阻尼率则会随着环向转动马赫数而迅速减小.此外,低频模和声波分支的频率以及无碰撞阻尼率都会随着环向转动马赫数而逐渐减小,其中环向转动对声波分支的频率以及无碰撞阻尼率的影响非常小,基本上可以忽略. 相似文献
12.
Hamada Y Watari T Yamagishi O Nishizawa A Narihara K Kawasumi Y Ido T Kojima M Toi K;JIPP T-IIU Group 《Physical review letters》2007,99(6):065005
When Ohmically heated low-density plasmas are additionally heated by higher-harmonics ion-cyclotron-range-of frequency heating, heated by neutral beam injection, or strongly gas puffed, the intensity of zonal flows in the geodesic acoustic mode frequency range in the tokamak core plasma decreases sharply and that of low-frequency zonal flow grows drastically. This is accompanied by a damping of the drift wave propagating in the electron diamagnetic drift direction, turbulence by trapped electron mode (TEM), and the increase of the mode propagating to ion diamagnetic drift direction (ITG). In the half-radius region, TEM and high-frequency zonal flows remain intense in both OH and heated phases. ITG and low-frequency zonal flows grow in heated plasmas, suggesting a strong coupling between ITG and low-frequency zonal flow. 相似文献
13.
Progress from global gyrokinetic simulations in understanding the origin of intrinsic rotation in toroidal plasmas is reported. The turbulence-driven intrinsic torque associated with nonlinear residual stress generation due to zonal flow shear induced asymmetry in the parallel wave number spectrum is shown to scale close to linearly with plasma gradients and the inverse of the plasma current, qualitatively reproducing experimental empirical scalings of intrinsic rotation. The origin of current scaling is found to be enhanced k(∥) symmetry breaking induced by the increased radial variation of the safety factor as the current decreases. The intrinsic torque is proportional to the pressure gradient because both turbulence intensity and zonal flow shear, which are two key ingredients for driving residual stress, increase with turbulence drive, which is R/L(T(e)) and R/L(n(e)) for the trapped electron mode. 相似文献
14.
Shiraiwa S Hanada K Hasegawa M Idei H Kasahara H Mitarai O Nakamura K Nishino N Nozato H Sakamoto M Sasaki K Sato K Takase Y Yamada T Zushi H;TST-@K Group 《Physical review letters》2006,96(18):185003
The first successful high power heating of a high dielectric constant spherical tokamak plasma by an electron Bernstein wave (EBW) is reported. An EBW was excited by mode conversion (MC) of an mode cyclotron wave injected from the low magnetic field side of the TST-2 spherical tokamak. Evidence of electron heating was observed as increases in the stored energy and soft x-ray emission. The increased emission was concentrated in the plasma core region. A heating efficiency of over 50% was achieved, when the density gradient in the MC region was sufficiently steep. 相似文献
15.
16.
17.
Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas 下载免费PDF全文
The structural characteristics of zonal flows and their roles in the nonlinear interaction of multi-scale multi-mode turbulence are investigated numerically via a self-consistent Landau-fluid model. The multi-mode turbulence here is composed of a shorter wavelength electromagnetic (EM) ion temperature gradient (ITG) mode and a Kelvin-Helmholtz (KH) instability with long wavelengths excited by externally imposed small-scale shear flows. For strong shear flow, a prominent periodic intermittency of fluctuation intensity except for dominant ITG component is revealed in turbulence evolution, which onset time depends on the ion temperature gradient and the shear flow amplitudes corresponding to different KH instabilities. It is identified that the intermittency phenomenon results from the zonal flow dynamics, which is mainly generated by the KH mode and back-reacts on it. It is demonstrated that the odd symmetric components of zonal flow (same symmetry as the external flow) make the radial parity of the KH mode alteration through adjusting the drift velocities at two sides of the resonant surface so that the KH mode becomes bursty first. Afterwards, the ITG intermittency follows due to nonlinear mode coupling. Parametric dependences of the features of the intermittency are elaborated. Finally, associated turbulent heat transport is evaluated. 相似文献
18.
19.
With explicit torque expression derived, it is found that the resonance of the static-error-field amplification (i.e., the maximum of the static-error-field-induced torque) in tokamak plasmas lies at the no-wall stability limit, instead of at the resistive wall mode stability limit as given by the existing theories. This brings theoretical predictions into qualitative conformity with experiments. 相似文献
20.
托卡马克等离子体中的电子回旋波电流驱动 总被引:6,自引:1,他引:6
通过将波迹方程与相对论情况下的完全Fokker-Planck方程联合进行求解,研究了寻常波基频电子回旋波从托卡马克等离子体中平面弱场侧发射时的电流驱动。数值结果表明:随着等离子体电子密度、温度的提高, 功率沉积和电流分布的位置将向等离子体的边缘方向偏移,并且产生的总的驱动电流随之减小;入射波极向发射角和环向发射角度的改变对功率沉积、电流分布及其大小产生明显的影响。 相似文献