首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to probe the effect of charge fluctuations on triplet pairing, we study the pairing symmetry in the one-band Hubbard model having the off-site Coulomb repulsion (V) on top of the on-site repulsion as a model for the gamma band of Sr2RuO4, a strong candidate for a triplet pairing superconductor. The result, obtained with the dynamical cluster approximation combined with the quantum Monte Carlo method, and confirmed from the fluctuation exchange approximation, shows that while d(x(2)-y(2)) pairing dominates over p in the absence of V, introduction of V makes p(x+y) and d(xy) dominant. The gap function for the chiral p(x+y)+ip(x-y) has nodes that are consistent with the recent measurement of specific heat in rotated magnetic fields in the ruthenate. This suggests that the off-site repulsion may play an essential role in triplet superconductivity in this material.  相似文献   

2.
We consider the coexistence of antiferromagnetism and d-wave superconductivity, motivated by what one observes in the quasi-two dimensional organic salts. We study an electronic model that approximates some features of the Hubbard model, e.g., a repulsion that promotes local moments and Neel order, and an attractive intersite density–density coupling that promotes d-wave superconductivity. Staying at half-filling and a fixed attractive interaction we probe the effect of varying repulsion, using mean field theory for the ground state but retaining the full O(3) × U(1) spectrum of classical fluctuations at finite temperature. The ground state is superconducting at weak repulsion, a Neel ordered insulator at large repulsion, and a coexistence of the two orders in the intermediate regime. We observe four distinct kinds of thermal behaviour depending on the strength of repulsion. Starting with weak repulsion these are, first, a d-wave superconductor renormalised by magnetic fluctuations, second, a d-wave state transiting to an antiferromagnetic insulator and then to the normal state, third, a coexistent state transiting to the antiferromagnetic insulator and then the normal state, and, fourth, a Neel ordered insulator with weak pairing fluctuations. The low temperature state is either “nodal” or gapped, due to long range order, and the low energy spectral weight generally increases monotonically with temperature. At intermediate repulsion, however, the transition from the d-wave state to Neel antiferromagnet causes a loss of low energy weight which is gradually regained only at high temperature.  相似文献   

3.
It is often claimed that strong on site electronic interactions and correlations lead to neighbor attractions, offering a new mechanism for superconductivity. Here it will be demonstrated that for the single band case, there is a neighbor repulsion between electrons. It is hidden by a finite size effect which has dominated all results obtained so far.  相似文献   

4.
Wei-qiang CHEN&#  &#  &#  &#  &#  Kai-yu YANG&#  &#  &#  &#  &#  Yi ZHOU&#  &#  &#  &#  Fu-chun ZHANG&#  &#  &#  &#  &# 《Frontiers of Physics》2009,4(4):447
Superconductivity in iron pnictides is studied by using a two-orbital Hubbard model in the large U limit. The Coulomb repulsion induces an orbital-dependent pairing between charge carriers. The pairing is found mainly from the scattering within the same Fermi pocket where usually one single orbital dominates. The inter-pocket pair scatterings determine the symmetry of the singlet superconductivity, which is an extended s-wave at small Hund’s coupling, and d-wave at large Hund’s coupling and large U. The former is consistent with recent experiments of ARPES and Andreev reflection spectroscopy. Spin triplet states only become important at large exchange interaction J.  相似文献   

5.
We analyze fulleride superconductivity at experimental doping levels, treating the electron-electron and electron-phonon interactions on an equal footing, and demonstrate that the Jahn-Teller phonons create a local (intramolecular) pairing which is surprisingly resistant to the Coulomb repulsion, despite the weakness of retardation in these low-bandwidth systems. The requirement for coherence throughout the solid then yields a very strong doping dependence to T(c), one consistent with experiment and much stronger than expected from standard Eliashberg theory.  相似文献   

6.
The gap equation for three-gap superconductivity has a chiral solution driven by a repulsive interaction (inter-band exchange repulsion). When a repulsive channel contributes to the superconductivity, the emergence of chiral superconductivity should be considered.  相似文献   

7.
We obtain exact ground states of an extended periodic Anderson model (EPAM) with non-local hybridization and Coulomb repulsion between f and c electrons (Falicov-Kimball term) in one dimension. We show that for a range of parameter values these ground states exhibit composite hole pairing and superconductivity that originate from purely electronic interactions.  相似文献   

8.
9.
In this paper, by using the level spectroscopy method and bosonization theory, we discuss the evolution of the bond-order-wave (BOW) phase in a one-dimensional half-filled extended Hubbard model wlth the on-site Coulomb repulsion U as well as the inter-site Coulomb repulsion V and antiferromagnetic exchange J. After clarifying the generic phase diagrams in three limiting cases with one of the parameters being fixed at zero individually, we find that the BOW phase in the U-V phase diagram is initially enlarged as J increases from zero but is eventually suppressed as J increases further in the strong-coupling regime. A three-dimensional phase diagram is suggested where the BOW phase exists in an extended region separated from the spin-density-wave and charge-density-wave phases.  相似文献   

10.
We calculated the one-electron susceptibility of hydrated NaxCoO2 and find strong nesting, involving about 70% of all electrons at the Fermi level and nearly commensurate with a 2 x 2 superstructure. This nesting creates a tendency to a charge density wave compatible with the charge order often seen at x approximately 0.5 and usually ascribed to electrostatic repulsion of Na ions. In the spin channel, it leads to strong spin fluctuations, which should be important for superconductivity. The state most compatible with this nesting structure is an odd-gap triplet s-wave state.  相似文献   

11.
Superconducting properties of carbon nanotubes   总被引:1,自引:0,他引:1  
Metallic single wall carbon nanotubes have attracted much interest as 1D quantum wires combining a low carrier density and a high mobility. It was believed for a long time that low temperature transport was exclusively dominated by the existence of unscreened Coulomb interactions leading to an insulating behavior at low temperature. However experiments have also shown evidence of superconductivity in carbon nanotubes. We distinguish two fundamentally different physical situations. When carbon nanotubes are connected to superconducting electrodes, they exhibit proximity induced superconductivity with supercurrents which strongly depend on the transmission of the electrodes. On the other hand intrinsic superconductivity was also observed in suspended ropes of carbon nanotubes and recently in doped individual tubes. These experiments indicate the presence of attractive interactions in carbon nanotubes which overcome Coulomb repulsion at low temperature, and enables investigation of superconductivity in a 1D limit never explored before. To cite this article: M. Ferrier et al., C. R. Physique 10 (2009).  相似文献   

12.
In this paper, by using the level spectroscopy method and bosonization theory, we discuss the evolution of the bond-order-wave (BOW) phase in a one-dimensional half-filled extended Hubbard model with the on-site Coulomb repulsion U as well as the inter-site Coulomb repulsion V and antiferromagnetic exchange J. After clarifying the generic phase diagrams in three limiting cases with one of the parameters being fixed at zero individually, we find that the BOW phase in the U-V phase diagram is initially enlarged as J increases from zero but is eventually suppressed as J increases further in the strong-coupling regime. A three-dimensional phase diagram is suggested where the BOW phase exists in an extended region separated from the spin-density-wave and charge-density-wave phases.  相似文献   

13.
Extended t-t'-t"-J-U models in which the second-nearest-neighbor hopping (t') and third-nearest-neighbor hopping (t") are included are studied using renormalized mean field theory. The models are meant to be low-energy effective models for the Hubbard models, and hence the Heisenberg exchange integral J and Hubbard repulsion U are related by J = 4t(2)/U. The trial wavefunctions for the ground states are partially Gutzwiller projected Hartree-Fock states. The Gutzwiller projection is implemented by means of a Gutzwiller approximation, and the site double occupancy d is taken as a variational parameter. It is found that a large |t'/t| narrows the band filling range that sustains antiferromagnetism (AFM) in the ground state, enhances the d-wave singlet superconductivity (dSC) in hole overdoped systems, but suppresses the dSC in electron overdoped systems. For a system that has large |t'/t| and |t"/t'|, the superconductivity (SC) at the onset of AFM in hole doped band filling is strongly suppressed. On the excitation occurring, when an electron doped system simultaneously contains SC and AFM, the system is found to have a nodeless gap at the Fermi level. Finally, the result of this study is related to experiments on the superconducting cuprates.  相似文献   

14.
We discuss a physical mechanism of a non-BCS nature which can stabilize a superconducting state in a strongly repulsive electronic system. By considering the two-dimensional Hubbard model with spatially modulated electron hoppings, we demonstrate how kinetic-energy frustration can lead to robust d-wave superconductivity at arbitrarily large on-site repulsion. This phenomenon should be observable in experiments using fermionic atoms, e.g. 40K, in specially prepared optical lattices.  相似文献   

15.
É. G. Batyev 《JETP Letters》2003,78(4):207-212
The disorder effect on the interaction of quasiparticles between each other is discussed. The occurrence of a soft mode is taken as the basic assumption. The interaction through the soft mode results in attraction between Fermi quasiparticles (this is apart from the repulsion that has remained from the initial Coulomb interaction between particles). This attraction (in the vicinity of the Fermi surface) is strengthened with increasing concentration of the scattering centers. Therefore, even if the pure system exhibits no superconductivity, superconductivity could appear in the impurity system.  相似文献   

16.
We study a lattice bipolaron on a staggered triangular ladder and triangular and hexagonal lattices with both long-range electron-phonon interaction and strong Coulomb repulsion using a novel continuous-time quantum Monte Carlo algorithm to solve the two-particle Coulomb-Fr?hlich model. The algorithm is preceded by an exact integration over phonon degrees of freedom, and as such is extremely efficient. The bipolaron effective mass and radius are computed. Bipolarons on lattices constructed from triangular plaquettes have a novel crablike motion, and are small but very light over a wide range of parameters. We discuss the conditions under which such particles may form a Bose-Einstein condensate with high transition temperature, proposing a route to room temperature superconductivity.  相似文献   

17.
Based on a model Hamiltonian with competing antiferromagnetic (AF) and d-wave superconductivity interactions, the vortex charge is investigated by solving the Bogoliubov-de Gennes equations. We found that the vortex charge is negative when a sufficient strength of AF order is induced inside the vortex core; otherwise, it is positive. By tuning the on-site Coulomb repulsion U or the doping parameter delta, a transition between the positive and negative vortex charges may occur. The vortex charge at optimal doping has also been studied as a function of magnetic field. Recent NMR and Hall effect experiments may be understood in terms of the present results.  相似文献   

18.
Magnetization, specific heat, and electrical resistivity measurements have been performed on the superconductor Mo(3)Sb(7). Two kinds of transitions are observed at 2.3 and 50 K, respectively. The former is superconducting transition, while the latter is attributed to spin-gap formation. From the analysis of the experimental data, excitation gap, intra- and interdimer interactions are estimated as Delta/k(b) approximately 120 K, J(0)/k(B) approximately 150 K, and J(1)/k(B) approximately 55 K. The electronic structure calculations using the LSDA approximation show nesting property in the Fermi surface, favoring the superconductivity.  相似文献   

19.
M. Yu. Kagan 《JETP Letters》2016,103(11):728-738
In this short review, we first discuss the results, which are mainly devoted to the generalizations of the famous Kohn–Luttinger mechanism of superconductivity in purely repulsive fermion systems at low electron densities. In the context of repulsive-U Hubbard model and Shubin–Vonsovsky model we consider briefly the superconducting phase diagrams and the symmetries of the order parameter in novel strongly correlated electron systems including idealized monolayer and bilayer graphene. We stress that purely repulsive fermion systems are mainly the subject of unconventional low-temperature superconductivity. To get the high temperature superconductivity in cuprates (with TC of the order of 100 K) we should proceed to the t–J model with the van der Waals interaction potential and the competition between short-range repulsion and long-range attraction. Finally we note that to describe superconductivity in metallic hydrogen alloys under pressure (with TC of the order of 200 K) it is reasonable to reexamine more conventional mechanisms connected with electron–phonon interaction. These mechanisms arise in the attractive-U Hubbard model with static onsite or intersite attractive potential or in more realistic theories (which include retardation effects) such as Migdal–Eliashberg strong coupling theory or even Fermi–Bose mixture theory of Ranninger et al. and its generalizations.  相似文献   

20.
We propose that electron doped nontransition metal phthalocyanines such as ZnPc and MgPc, similar to those very recently reported, should constitute novel strongly correlated metals. Because of orbital degeneracy, Jahn-Teller coupling, and Hund's rule exchange, and with a large on-site Coulomb repulsion, these molecular conductors should display, particularly near half filling at two electrons/molecule, very unconventional properties, including Mott insulators, strongly correlated superconductivity, and other intriguing phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号