首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We examine the density of states of an Andreev billiard and show that any billiard with a finite upper cutoff in the path length distribution P(s) will possess an energy gap on the scale of the Thouless energy. An exact quantum mechanical calculation for different Andreev billiards gives good agreement with the semiclassical predictions when the energy dependent phase shift for Andreev reflections is properly taken into account. Based on this new semiclassical Bohr-Sommerfeld approximation of the density of states, we derive a simple formula for the energy gap. We show that the energy gap, in units of Thouless energy, may exceed the value predicted earlier from random matrix theory for chaotic billiards.  相似文献   

2.
The Kondo effect and the Andreev reflection tunneling through a normal (ferromagnet)-double quantum dots-superconductor hybrid system is examined in the low temperature by using the nonequilibrium Green's function technique in combination with the slave-boson mean-field theory. The interplay of the Kondo physics and the Andreev bound state physics can be controlled by varying the interdot hopping strength. The Andreev differential conductance is mainly determined by the competition between Kondo states and Andreev states. The spin-polarization of the ferromagnetic electrode increases the zero-bias Kondo peak. The spin-flip scattering influences the Kondo effect and the Andreev reflection in a nontrivial way. For the ferromagnetic electrode with sufficiently large spin polarization, the negative Andreev differential conductance is found when the spin flip strength in the double quantum dots is sufficiently strong.  相似文献   

3.
We show that irradiation of a voltage-biased superconducting quantum point contact at frequencies of the order of the gap energy can remove the suppression of subgap dc transport through Andreev levels. Quantum interference among resonant scattering events involving photon absorption is furthermore shown to make microwave spectroscopy of the Andreev levels feasible. We also discuss how the same interference effect can be applied for detecting weak electromagnetic signals up to the gap frequency, and how it is affected by dephasing and relaxation.  相似文献   

4.
In this Letter, we investigate the transport through a T-shaped double quantum dot coupled to two normal metal leads left and right and a superconducting lead. Analytical expressions of Andreev transmission and local density of states of the system at zero temperature have been obtained. We study the role of the superconducting lead in the quantum interferometric features of the double quantum dot. We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. Our results show that as a consequence of quantum interference and proximity effect, the transmission from normal to normal lead exhibits Fano resonances due to Andreev bound states. We find that this interference effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads.  相似文献   

5.
We report measurements of the nonlinear conductance of InAs nanowire quantum dots coupled to superconducting leads. We observe a clear alternation between odd and even occupation of the dot, with subgap peaks at |V(sd)| = Delta/e markedly stronger (weaker) than the quasiparticle tunneling peaks at |V(sd)| = 2Delta/e for odd (even) occupation. We attribute the enhanced Delta peak to an interplay between Kondo correlations and Andreev tunneling in dots with an odd number of spins, and we substantiate this interpretation by a poor man's scaling analysis.  相似文献   

6.
Nonequilibrium electronic transports through a system hosting three quantum dots hybridized with superconductors are investigated. By tuning the relative positions of the dot levels, we illustrate the existence of Majorana fermions and show that the Majorana feimions will either survive separately on single dots or distribute themselves among different dots with tunable probabilities. As a result, different physical mechanisms appear, including local Andreev reflection(LAR),cross Andreev reflection(CAR), and cross resonant tunneling(CRT). The resulting characteristics may be used to reveal the unique properties of Majorana fermions. In addition, we discuss the spin-polarized transports and find a pure spin current and a spin filter effect due to the joint effect of CRT and CAR, which is important for designing spintronic devices.  相似文献   

7.
彭菊  郁华玲  王之国 《中国物理 B》2009,18(12):5485-5490
This paper theoretically reports the nonlocal Andreev reflection and spin current in a normal metal-ferromagnetic metal-superconducting Aharonov--Bohm interferometer. It is found that the electronic current and spin current are sensitive to systematic parameters, such as the gate voltage of quantum dots and the external magnetic flux. The electronic current in the normal metal lead results from two competing processes: quasiparticle transmission and nonlocal Andreev reflection. The appearance of zero spin-up electronic current (or spin-down electronic current) signals the existence of nonlocal Andreev reflection, and the presence of zero electronic current results in the appearance of pure spin current.  相似文献   

8.
Behavior of Andreev gap states in a quantum dot with Coulomb repulsion symmetricallyattached to superconducting leads is studied via the perturbation expansion in theinteraction strength. We find the exact asymptotic form of the spin-symmetric solution forthe Andreev states continuously approaching the Fermi level. We thereby derive a criticalinteraction at which the Andreev states at zero temperature merge at the Fermi energy,being the upper bound for the 0-π transition. We show that the spin-symmetricsolution becomes degenerate beyond this interaction, in the π phase, and the Andreevstates do not split unless the degeneracy is lifted. We further demonstrate that thedegeneracy of the spin-symmetric state extends also into the 0 phase in which the solutions with zero andnon-zero frequencies of the Andreev states may coexist.  相似文献   

9.
We describe effects seen in coupled superconductor–semiconductor hybrid systems in various mesoscopic geometries. The hybrid structures consist of niobium films on high mobility InAs:GaSb quantum wells which form high transparency, low-resistance interfaces exhibiting a variety of effects in their resistive transitions and differential resistance scans. Grating structures show effects arising out of the confinement of quasiparticles while dot arrays show evidence of proximity induced superconductivity scaling as the density of dots. Superconducting dots deposited on narrow semiconductor channels show suppression of Andreev reflection which we attribute to interdot diffuse scattering from the walls of the channel.  相似文献   

10.
We investigate the quantum interference effects in quantum dots of a two-dimensional electron gas attached to a superconductor. When the dot size is comparable to the Fermi wavelength of an electron, transmission resonance shows up in the conductance as distinct peaks and dips. The coupling of electron-like and hole-like excitations by the Andreev reflection leads to a rich variety of behavior of the resonance, in particular, against the bias voltage. Enlarging the dot size, the transmission resonance evolves into conductance fluctuations. The low-magnetic-field conductance fluctuations are shown to be remarkably geometry-specific in comparison to those in the normal counterparts.  相似文献   

11.
叶成芝  聂一行  梁九卿 《中国物理 B》2011,20(12):127202-127202
We propose a four-terminal device consisting of two parallel quantum dots with Rashba spin-orbit interaction (RSOI), coupled to two side superconductor leads and two common ferromagnetic leads, respectively. The two ferromagnetic leads and two quantum dots form a ring threaded by Aharonov-Bohm (AB) flux. This device possesses normal quasiparticle transmission between the two ferromagnetic leads, and normal and crossed Andreev reflections providing conductive holes. For the appropriate spin polarization of the ferromagnetic leads, RSOI and AB flux, the pure spin-up (or spin-down) current without net charge current in the right lead, which is due to the equal numbers of electrons and holes with the same spin-polarization moving along the same direction, can be obtained by adjusting the gate voltage, which may be used in practice as a pure spin-current injector.  相似文献   

12.
13.
Hui Pan  Su-Qing Duan 《Physics letters. A》2009,373(14):1294-1300
AC field-controlled Andreev tunneling through two serially-coupled quantum dots are investigated theoretically by using the nonequilibrium Green's function method. The photon-assisted Andreev tunneling is studied in detail. It is found that the average current depends distinctly on the interdot coupling. In the weak interdot coupling case, the average current versus the gate voltage exhibit negative peaks on the left-hand side and positive peaks on the right-hand side of the Fermi level. However, in the strong interdot coupling case, the current exhibit both negative and positive peaks on each side of the Fermi level. Furthermore, the system can function as an electron pump capable of transporting electrons through the resonant photon-assisted Andreev tunneling.  相似文献   

14.
We report resonant multiple Andreev reflections in a multiwall carbon nanotube quantum dot coupled to superconducting leads. The position and magnitude of the subharmonic gap structure is found to depend strongly on the level positions of the single-electron states which are adjusted with a gate electrode. We discuss a theoretical model of the device and compare the calculated differential conductance with the experimental data.  相似文献   

15.
We study quantum transport in honeycomb lattice ribbons with either armchair or zigzag edges. The ribbons are coupled to semi-infinite linear chains serving as the input and output leads and we use a tight-binding Hamiltonian with nearest-neighbor hops. The input and output leads are coupled to the ribbons through bar contacts. In narrow ribbons we find transmission gaps for both types of edges. The appearance of this gap is due to the enhanced quantum interference coming from the multiple channels in bar contacts. The center of the gap is at the middle of the band in ribbons with armchair edges. This particle-hole symmetry is because bar contacts do not mix the two sublattices of the underlying bipartite honeycomb lattice when the ribbon has armchair edges. In ribbons with zigzag edges the gap center is displaced to the right of the band center. This breakdown of particle-hole symmetry is the result of bar contacts now mixing the two sublattices. We also find transmission oscillations and resonances within the transmitting region of the band for both types of edges. Extending the length of a ribbon does not affect the width of the transmission gap, as long as the ribbon’s length is longer than a critical value when the gap can form. Increasing the width of the ribbon, however, changes the width of the gap. In ribbons with zigzag edges the gap width systematically shrinks as the width of the ribbon is increased. In ribbons with armchair edges the gap is not well-defined because of the appearance of transmission resonances. We also find only evanescent waves within the gap and both evanescent and propagating waves in the transmitting regions.  相似文献   

16.
In a quantum-mechanical system, particle-hole duality implies that instead of studying particles, we can get equivalent information by studying the missing particles, the so-called holes. Using this duality picture for fermions in a rotating trap the vortices appear as holes in the Fermi sea. Here we predict that the formation of vortices in quantum dots at high magnetic fields causes oscillations in the energy spectrum which can be experimentally observed using accurate tunneling spectroscopy. We use the duality picture to show that these oscillations are caused by the localization of vortices in rings.  相似文献   

17.
18.
Samples of borosilicate glasses doped by CdS with concentrations smaller than 1% are studied. It is shown that, due to a disorder at interfaces of quantum dots, the main channels of emission of excitons by quantum dots are the annihilation of excitons in quantum and localized surface states, while the efficiency of interaction between the channels largely depends on the radius of quantum dots. It is found for the first time that states that form the second emission channel are not discrete energy levels in the band gap, as is usually assumed in some experimental and theoretical works, but rather form a quasi-continuous tail of the density of localized states. These localized states appear as a result of dangling bonds of outer atoms of quantum dots. Energy relaxation of carriers via localized states is the reason for a long response time of these structures to an external action and can be enhanced due to a polarization effect caused by different dielectric constants of materials of quantum dots and matrix.  相似文献   

19.
We introduce a tight-binding chain with a single impurity to act as a quantum data bus for perfect quantum state transfer. Our proposal is based on the weak coupling limit of the two outermost quantum dots to the data bus, which is a gapped system induced by the impurity. By connecting two quantum dots to two sites of the data bus, the system can accomplish a high-fidelity and long-distance quantum state transfer. Numerical simulations for finite system show that the numerical and analytical results of the effective coupling strength agree well with each other. Moreover, we study the robustness of this quantum communication protocol in the presence of disorder in the couplings between the nearest-neighbor quantum dots. We find that the gap of the system plays an important role in robust quantum state transfer.  相似文献   

20.
The quantum dots of antimony trisulphide, a potential semiconductor for various applications, are grown in glass matrix for the first time and are characterized by various techniques. The dependence of the average dot size on growth parameters like growth temperature and time is systematically studied for the dot size range of 5–80 nm. The linear blue shift of band gap of dots with inverse square of dot size clearly indicates the typical behavior of quantum dots in a strong quantum confinement regime. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号