首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
For an anyon model in two spatial dimensions described by a modular tensor category, the topological S-matrix encodes the mutual braiding statistics, the quantum dimensions, and the fusion rules of anyons. It is nontrivial whether one can compute the S-matrix from a single ground state wave function. Here, we define a class of Hamiltonians consisting of local commuting projectors and an associated matrix that is invariant under local unitary transformations. We argue that the invariant is equivalent to the topological S-matrix. The definition does not require degeneracy of the ground state. We prove that the invariant depends on the state only, in the sense that it can be computed by any Hamiltonian in the class of which the state is a ground state. As a corollary, we prove that any local quantum circuit that connects two ground states of quantum double models (discrete gauge theories) with non-isomorphic abelian groups must have depth that is at least linear in the system’s diameter. As a tool for the proof, a manifestly Hamiltonian-independent notion of locally invisible operators is introduced. This gives a sufficient condition for a many-body state not to be generated from a product state by any small depth quantum circuit; this is a many-body entanglement witness.  相似文献   

2.
A large class of topological orders can be understood and classified using the string-net condensation picture. These topological orders can be characterized by a set of data (N, di, F(lmn)(ijk), delta(ijk). We describe a way to detect this kind of topological order using only the ground state wave function. The method involves computing a quantity called the "topological entropy" which directly measures the total quantum dimension D= Sum(id2i).  相似文献   

3.
The resonating-valence-bond (RVB) theory for two-dimensional quantum antiferromagnets is shown to be the correct paradigm for large enough "quantum frustration." This scenario, proposed a long time ago but never confirmed by microscopic calculations, is strongly supported by a new type of variational wave function, which is extremely close to the exact ground state of the J(1)-J(2) Heisenberg model for 0.4 less than approximately J(2)/J(1) less than approximately 0.5. This wave function is proposed to represent the generic spin-half RVB ground state in spin liquids.  相似文献   

4.
We provide numerical evidence that a p(x)-ip(y) paired Bonderson-Slingerland (BS) non-Abelian hierarchy state is a strong candidate for the observed ν=12/5 quantum Hall plateau. We confirm the existence of a gapped incompressible ν=12/5 quantum Hall state with shift S=2 on the sphere, matching that of the BS state. The exact ground state of the Coulomb interaction at S=2 is shown to have a large overlap with the BS trial wave function. Larger overlaps are obtained with BS-type wave functions that are hierarchical descendants of general p(x)-ip(y) weakly paired states at ν=5/2. We perform a finite-size scaling analysis of the ground-state energies for ν=12/5 states at shifts corresponding to the BS (S=2) and 3-clustered Read-Rezayi (S=-2) universality classes. This analysis reveals very tight competition between these two non-Abelian topological orders.  相似文献   

5.
Fractional quantum Hall systems are often described by model wave functions,which are the ground states of pure systems with short-range interaction.A primary example is the Laughlin wave function,which supports Abelian quasiparticles with fractionalized charge.In the presence of disorder,the wave function of the ground state is expected to deviate from the Laughlin form.We study the disorder-driven colla.pse of the quantum Hall state by analyzing the evolution of the ground state and the single-quasihole state.In particular,we demonstrate that the quasihole tunneling amplitude can signal the fractional quantum Hall phase to insulator transition.  相似文献   

6.
The competition between the Zeeman energy and the Rashba and Dresselhaus spin-orbit couplings is studied for fractional quantum Hall states by including correlation effects. A transition of the direction of the spin polarization is predicted at specific values of the Zeeman energy. We show that these values can be expressed in terms of the pair-correlation function, and thus provide information about the microscopic ground state. We examine the particular examples of the Laughlin wave functions and the 5/2-Pfaffian state. We also include effects of the nuclear bath.  相似文献   

7.
We study the behavior of two-dimensional electron gas in the fractional quantum Hall(FQH) regime in the presence of disorder potential. The principal component analysis is applied to a set of disordered Laughlin ground state model wave function to enable us to distill the model wave function of the pure Laughlin state.With increasing the disorder strength, the ground state wave function is expected to deviate from the Laughlin state and eventually leave the FQH phase. We investigate the phase transition from the Laughlin state to a topologically trivial state by analyzing the overlap between the random sample wave functions and the distilled ground state wave function. It is proposed that the cross point of the principal component amplitude and its counterpart is the critical disorder strength, which marks the collapse of the FQH regime.  相似文献   

8.
在超冷费米系统中实现人造规范势的突破,吸引了许多新问题的研究,展现了许多新奇的物理现象.本文研究了在环阱中,具有自旋轨道耦合和塞曼作用的两体相互作用费米模型.通过平面波展开的方法,解析求解了两体费米系统的本征能态.系统的总动量为守恒量,可以在不同总动量空间中研究能谱.研究发现:随着塞曼相互作用增大,在不同总动量空间,两体费米系统的本征能量均逐渐降低,系统基态从总动量为零空间转变到有限值空间.从吸引到排斥相互作用,无塞曼相互作用时,基态总动量始终为零,有塞曼相互作用时,基态总动量从零转变为有限值.通过单粒子和基态动量分布研究,本文直观地揭示了由塞曼能级劈裂引起的基态转变.  相似文献   

9.
An intrinsic measure of the quality of a variational wave function is given by its overlap with the ground state of the system. We derive a general formula to compute this overlap when quantum dynamics in imaginary time is accessible. The overlap is simply related to the area under the E(tau) curve, i.e., the energy as a function of imaginary time. This has important applications to, for example, quantum Monte Carlo simulations where the overlap becomes as a simple by-product of routine simulations. As a result, we find that the practical definition of a good variational wave function for quantum Monte Carlo simulations, i.e., fast convergence to the ground state, is equivalent to a good overlap with the actual ground state of the system.  相似文献   

10.
We explore the feasibility of a quantum self-correcting memory based on 3D spin Hamiltonians with topological quantum order in which thermal diffusion of topological defects is suppressed by macroscopic energy barriers. To this end we characterize the energy landscape of stabilizer code Hamiltonians with local bounded-strength interactions which have a topologically ordered ground state but do not have stringlike logical operators. We prove that any sequence of local errors mapping a ground state of such a Hamiltonian to an orthogonal ground state must cross an energy barrier growing at least as a logarithm of the lattice size. Our bound on the energy barrier is tight up to a constant factor for one particular 3D spin Hamiltonian.  相似文献   

11.
We demonstrate how to construct a large class of interacting quantum systems for which an exact solution may be found for the ground state wave function and ground state energy for some range of interaction parameters. It is shown that the ground state exhibits singularities in these cases, and in some simple instances the exact ground state phase diagram and critical indices are also found.  相似文献   

12.
We have proposed a novel numerical method to calculate accurately physical quantities of the ground state using the tensor network wave function in two dimensions. The tensor network wave function is determined by an iterative projection approach which uses the Trotter-Suzuki decomposition formula of quantum operators and the singular value decomposition of matrix. The norm of the wave function and the expectation value of a physical observable are evaluated by a coarse-grain tensor renormalization group approach. Our method allows a tensor network wave function with a high bond degree of freedom (such as D=8) to be handled accurately and efficiently in the thermodynamic limit. For the Heisenberg model on a honeycomb lattice, our results for the ground state energy and the staggered magnetization agree well with those obtained by the quantum Monte Carlo and other approaches.  相似文献   

13.
We study the robustness, against the leakage of bosons, of wave functions of interacting many bosons confined in a finite box by deriving and analyzing a general equation of motion for the reduced density operator. We identify a robust wave function that remains a pure state, whereas other wave functions, such as the Bogoliubov's ground state and the ground state with a fixed number of bosons, evolve into mixed states. Although these states all have the off-diagonal long-range order, and the same energy, we argue that only the robust state is realized as a macroscopic quantum state.  相似文献   

14.
刘褚航  强百强  季育琛  李炜 《物理学报》2017,66(23):230102-230102
利用数值有限差分法处理二维氢原子的基态波函数时,计算结果发现其存在着数值奇异特性.本文通过构造一套具有正交完备性的离散贝塞尔基函数,并结合基于Lanczos技术的数值精确对角化方法研究二维氢原子中的基态波函数的数值奇异特性,得到的波函数数值解及其相应的本征能量均与解析结果相一致.这套新的完备的离散贝塞尔基函数,可以在研究一些波函数具有数值奇异特性的体系中发挥至关重要的作用.  相似文献   

15.
We determine the quantum phase diagram of a two-dimensional bosonic t-Jz model as a function of the lattice anisotropy gamma, using a quantum Monte Carlo loop algorithm. We show analytically that the low-energy sectors of the bosonic and the fermionic t-Jz models become equivalent in the limit of small gamma. In this limit, the ground state represents a static stripe phase characterized by a nonzero value of a topological order parameter. This phase remains up to intermediate values of gamma, where there is a quantum phase transition to a phase-segregated state or a homogeneous superfluid with dynamic stripe fluctuations depending on the ratio Jz/t.  相似文献   

16.
We study a one parameter variational wave function to improve the spin density wave ground state of the Hubbard model by inclusion of quantum spin fluctuations. Using a perturbative approach and novel lattice summation techniques we present analytical as well as numerical results for the correlation energies and the staggered magnetizations in one and two dimensions. We find ground state energies which are satisfyingly close to known exact results and are significantly lower than those of existing Gutzwiller and numerical treatments.  相似文献   

17.
应用新发展的单一轨迹积分方法求解库仑加线性位的基态量子波函数,得到基态能量和波函数的一般解析表达式,并讨论了解的收敛性.应用此方法讨论了重夸克偶素系统.  相似文献   

18.
The Schrödinger–Langevin equation with linear dissipation is integrated by propagating an ensemble of Bohmian trajectories for the ground state of quantum systems. Substituting the wave function expressed in terms of the complex action into the Schrödinger–Langevin equation yields the complex quantum Hamilton–Jacobi equation with linear dissipation. We transform this equation into the arbitrary Lagrangian–Eulerian version with the grid velocity matching the flow velocity of the probability fluid. The resulting equation is simultaneously integrated with the trajectory guidance equation. Then, the computational method is applied to the harmonic oscillator, the double well potential, and the ground vibrational state of methyl iodide. The excellent agreement between the computational and the exact results for the ground state energies and wave functions shows that this study provides a synthetic trajectory approach to the ground state of quantum systems.  相似文献   

19.
Hartree-Fock approximation of bipolaron state in quantum dots and wires   总被引:1,自引:0,他引:1  
The bipolaronic ground state of two electrons in a spherical quantum dot or a quantum wire with parabolic boundaries is studied in the strong electron-phonon coupling regime. We introduce a variational wave function that can conveniently conform to represent alternative ground state configurations of the two electrons, namely, the bipolaronic bound state, the state of two individual polarons, and two nearby interacting polarons confined by the external potential. In the bipolaron state the electrons are found to be separated by a finite distance about a polaron size. We present the formation and stability criteria of bipolaronic phase in confined media. It is shown that the quantum dot confinement extends the domain of stability of the bipolaronic bound state of two electrons as compared to the bulk geometry, whereas the quantum wire geometry aggravates the formation of stable bipolarons.  相似文献   

20.
We suggest that a magnetic-field-induced Peierls instability accounts for the recent experiment of Zhang et al. in which unexpected quantum Hall plateaus were observed at high magnetic fields in graphene on a substrate. This Peierls instability leads to an out-of-plane lattice distortion resulting in a charge density wave (CDW) on sublattices A and B of the graphene honeycomb lattice. We also discuss alternative microscopic scenarios proposed in the literature and leading to a similar CDW ground state in graphene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号