首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The light-scattering effect in the dye-sensitized solar cells (DSCs) was studied by controlling TiO2 phase composition and morphology by fabrication of double-layer cells with different arrangement modes. The starting material for preparation of TiO2 cells was synthesized by an aqueous sol–gel process. X-ray diffraction and field emission scanning electron microscopic analyses revealed that TiO2 nanoparticles had particle size ranging between 18 and 44 nm. The optical property and band gap energy of TiO2 nanoparticles were studied through UV–Vis absorption. The indirect optical band gap energy of anatase and rutile nanoparticles was found to be 3.47 and 3.41 eV, respectively. The double-layer DSC made of nanostructured TiO2 film with phase composition of 78 % anatase and 22 % rutile as the under-layer and mixtures of anatase-nanoparticles and anatase-microparticles as the over-layer (i.e., NM solar cell) was shown the highest power conversion efficiency (PCE) of 6.04 % and open circuit voltage of 795 mV. This was achieved due to the optimal balance between the light scattering effect and dye sensitization parameters. Optimum light scattering of photoanode led to improve the PCE of NM double-layer solar cell which was demonstrated by diffuse reflectance spectroscopy.  相似文献   

2.
Hollow SiO2/TiO2 nanoparticles decorated with Ag nanoparticles (NPs) of controlled size (Ag@HNPs) were fabricated in order to enhance visible‐light absorption and improve light scattering in dye‐sensitized solar cells (DSSCs). They exhibited localized surface plasmon resonance (LSPR) and the LSPR effects were significantly influenced by the size of the Ag NPs. The absorption peak of the LSPR band dramatically increased with increasing Ag NP size. The LSPR of the large Ag NPs mainly increased the light absorption at short wavelengths, whereas the scattering from the SiO2/TiO2 HNPs improved the light absorption at long wavelengths. This enabled the working electrode to use the full solar spectrum. Furthermore, the SiO2 layer thickness was adjusted to maximize the LSPR from the Ag NPs and avoid corrosion of the Ag NPs by the electrolyte. Importantly, the power conversion efficiency (PCE) increased from 7.1 % with purely TiO2‐based DSSCs to 8.1 % with HNP‐based DSSCs, which is an approximately 12 % enhancement and can be attributed to greater light scattering. Furthermore, the PCEs of Ag@HNP‐based DSSCs were 11 % higher (8.1 vs. 9.0 %) than the bare‐HNP‐based DSSCs, which can be attributed to LSPR. Together, the PCE of Ag@HNP‐based DSSCs improved by a total of 27 %, from 7.1 to 9.0 %, due to these two effects. This comparative research will offer guidance in the design of multifunctional nanomaterials and the optimization of solar‐cell performance.  相似文献   

3.
TiO2/EDTA-rich carbon composites exhibits excellent photoreduction of Cr(VI) activity via ligand-to-metal charge transfer process.  相似文献   

4.
Dye-sensitized solar cells (DSSCs) have established themselves as an alternative to conventional solar cells owing to their remarkably high power conversion efficiency, longtime stability and low-cost production. DSSCs composed of a dyed oxide semiconductor photoanode, a redox electrolyte and a counter electrode. In these devices, conversion efficiency is achieved by ultra-fast injection of an electron from a photo excited dye into the conduction band of metal oxide followed by subsequent dye regeneration and holes transportation to the counter electrode. The energy conversion efficiency of DSSC is to be dependent on the morphology and structure of the dye adsorbed metal oxide photoanode. Worldwide considerable efforts of DSSCs have been invested in morphology control of photoanode film, synthesis of stable optical sensitizers and improved ionic conductivity electrolytes. In the present investigation, a new composite nano structured photoanodes were prepared using TiO2 nano tubes (TNTs) with TiO2 nano particles (TNPs). TNPs were synthesized by sol–gel method and TNTs were prepared through an alkali hydrothermal transformation. Working photoanodes were prepared using five pastes of TNTs concentrations of 0, 10, 50, 90, and 100 % with TNPs. The DSSCs were fabricated using Indigo carmine dye as photo sensitizer and PMII (1-propyl-3-methylimmidazolium iodide) ionic liquid as electrolyte. The counter electrode was prepared using Copper sulfide. The structure and morphology of TNPs and TNTs were characterized by X-ray diffraction and electron microscopes (TEM and SEM). The photocurrent efficiency is measured using a solar simulator (100 mW/cm2). The prepared composite TNTs/TNPs photoanode could significantly improve the efficiency of dye-sensitized solar cells owing to its synergic effects, i.e. effective dye adsorption mainly originated from TiO2 nanoparticles and rapid electron transport in one-dimensional TiO2 nanotubes. The results of the present investigation suggested that the DSSC based on 10 % TNTs/TNPs showed better photovoltaic performance than cell made pure TiO2 nanoparticles. The highest energy-conversion efficiency of 2.80 % is achieved by composite TNTs (10 %)/TNPs film, which is 68 % higher than that pure TNPs film and far larger than that formed by bare TNTs film (94 %). The charge transport and charge recombination behaviors of DSSCs were investigated by electrochemical impedance spectra and the results showed that composite TNTs/TNPs film-based cell possessed the lowest transfer resistances and the longest electron lifetime. Hence, it could be concluded that the composite TNTs/TNPs photoanodes facilitate the charge transport and enhancing the efficiencies of DSSCs.  相似文献   

5.
In this work, the capping layer atop anodic TiO2 nanotube arrays (NTAs), which hinders filling of other guest materials and transport of charge carriers, is discerned to be TiO2 nanotapes. Then, it is completely removed by a novel sonication-polishing (SP) treatment, after which Sb2S3 is subsequently introduced to fill the nanotubes by chemical bath deposition. The morphological, structural, and optical properties of the SP-treated TiO2 NTAs and TiO2 NTAs/Sb2S3 heterogeneous structures are characterized systematically. The results indicate that SP treatment opens the tops of nanotubes with diameters of ~120 nm, which endure a phase conversion from amorphous to anatase after calcination at 450 °C; besides, stibnite Sb2S3 with a band gap of ~1.75 eV inside the TiO2 networks is formed upon heat treatment at 330 °C in Ar, which enhances the absorption in visible light range. The photoelectrochemical (PEC) and photovoltaic properties for the SP-treated TiO2 NTAs are investigated. Results shows that the photoresponse of TiO2 NTAs is improved by the SP treatment, and the photocurrent for the TiO2 NTAs/Sb2S3 electrode is substantially enhanced as compared to the bare TiO2 one. A high efficiency of 6.28 % is achieved in a TiO2 NTAs/Sb2S3 PEC cell. In addition, charge recombination in the photoanode of dye-sensitized solar cells (DSSCs) is observed to be greatly retarded by using the SP-treated TiO2 NTAs as compared to TiO2 nanoparticles (NPs). Thus, the SP anodic TiO2 NTAs are promising in applications in various PEC areas such as photocatalysis and sensitized solar cells.  相似文献   

6.
High-temperature treatment steps in fabrication process of dye sensitized solar cell (DSSC) significantly contribute to the manufacturing costs and limit the use of temperature sensitive substrates. Therefore our aim was to develop a simple method for the preparation of water-based TiO2 paste. The paste is based on peroxotitanic acid (PTA) sol–gel matrix and commercial TiO2 nanoparticles (P25). Two fabrication processes to decompose/transform the PTA matrix in the printed TiO2 layer are explored and combined: annealing at temperatures up to 250 °C and/or oxygen plasma treatment. The results show that the PTA matrix in the paste converts to anatase phase and to some extent also attaches to the TiO2 nanoparticles P25 acting as an interconnecting network within TiO2 layer. The transformation of the PTA matrix occurs around 250 °C, but in the presence of TiO2 nanoparticles P25 it starts already at 120 °C. In addition the results reveal that the crystallization is achievable also solely with the oxygen plasma treatment. The efficiency of the TiO2 layers, exposed to different post-deposition treatments, is evaluated in DSSCs. The results show that oxygen plasma treatment of the TiO2 layers could efficiently replace temperature curing at 250 °C. Within this study the DSSCs with the efficiency up to 4.2 % measured under standard test conditions (1,000 W/m2, AM1.5, 25 °C) were realized.  相似文献   

7.
High-performance dye-sensitized photoelectrodes using ordered TiO2 nanotube arrays (TNTs) and TiO2 quantum dot blocking layers are fabricated. The free-standing TNT membranes with perfect ordered morphology are prepared by three times of anodic oxidation on Ti foils. These TNT membranes can be easily transported to conductive glasses to fabricate front-side illuminated photoelectrodes. By changing anodic oxidation duration, the thickness of TNT membranes can be controlled, which shows significant influence on the UV-Vis reflectance and absorption abilities of TNT-based photoelectrodes and further influence photovoltaic performance of dye-sensitized solar cells (DSSCs). The highest power conversion efficiency (PCE) of DSSCs about 6.21 % can be obtained by using TNT membranes prepared with anodic oxidation of 3 h. For further improving photovoltaic performance of DSSCs, TiO2 quantum dot (QDs) blocking layers are inserted between conductive glasses and TNT membranes in the photoelectrodes, which show remarkable effects. The highest PCE of DSSCs with this kind of blocking layers can increase to 8.43 %, producing 35.75 % enhancement compared with that of the counterparts without TiO2 QD blocking layers.  相似文献   

8.
The photodegradation of an aqueous solution of methyl orange by the TiO2/SnS powders was studied in different ratios of SnS against TiO2. The effects of the initial pH value and light resource were investigated. The SnS extends the light absorption edge of the TiO2 to ~940 nm of the SnS (1.32 eV). The results indicated that the optimal SnS proportion for the maximum degradation efficiency increased in relation to a decrease in the initial pH in both sunlight and visible light, and decreased when changing from visible light to sunlight. The pure TiO2 powder had maximum efficiency in conditions of pH 9 and visible light irradiation or in conditions of pH 7 and sunlight irradiation. In visible light, the degradation efficiency on the powders containing the SnS was larger than that on the pure TiO2 powder in a range of pH 3–7. The maximum efficiency in visible light was found to be in conditions of pH 5 and TiO2:SnS = 3:2 and 2:3, beyond which the efficiency decreased. The efficiency was, overall, larger in sunlight than in visible light. The mechanism of the effects of pH and light resource was discussed in view of the surface charge of the catalysts.  相似文献   

9.
A novel polymer gel electrolyte was used to improve the performance and long-term stability in dye-sensitized solar cells (DSSCs). The polymer gel electrolyte (PGE) was prepared by mixing 5 wt% poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and 2 % TiO2 nanoparticles. The conductivity of PGE with P25 reached 9.98 × 10?3 S/cm, which increased by 34.9 % compared with 7.40 × 10?3 S/cm of PGE without P25, and the diffusion coefficient was also increased by 19.0 %. Different photoelectrodes were obtained by using three kinds of surfactants (cetylamine, octadecylamine, and P123) as pore-forming materials, and their morphologies were contrasted through scanning electron microscopy (SEM). The results showed that gel electrolyte can increase the short-circuit current density (J sc) from 11.01 to 12.99 mA/cm2 in DSSCs. Moreover, unlike the liquid electrolyte, the gel electrolyte is more conducive to the TiO2 photoelectrodes with larger pores. In conclusion, the efficiency of DSSC with gel electrolyte and P123 as pore-forming material was 6.73 %, which was 12 % higher than the liquid electrolyte in the same test condition. In addition, the sealed gel electrolyte DSSCs showed better stability than did liquid electrolyte DSSCs during nearly 600 h.  相似文献   

10.
Enhanced harvesting of visible light is vital to the development of highly efficient dye‐sensitized solar cells (DSSCs). Nanosilver‐decorated TiO2 nanofibers (Ag@TiO2 NFs) were synthesized by depositing chemically reduced Ag ions onto the surface of electrospun TiO2 nanofibers (TiO2 NFs). The prepared Ag@TiO2 NFs were coated with SiO2 (SiO2@Ag@TiO2 NFs) by using PVP as coupling agent for protecting corrosion of Ag nanoparticle by I?/${{\rm I}{{- \hfill \atop 3\hfill}}}$ solution. The fabricated SiO2@Ag@TiO2 NFs demonstrated a synergistic effect of light scattering and surface plasmons, leading to an enhanced light absorption. Moreover, an anode consisting of SiO2@Ag@TiO2 NFs incorporating TiO2 nanoparticles (NPs) increased light harvesting without substantially sacrificing dye attachment. The power conversion efficiency increased from 6.8 to 8.7 % for a thick film (10 μm), that is, 28 %. These results suggest that SiO2@Ag@TiO2 NFs are promising materials for enhanced light absorption in dye‐sensitized solar cells.  相似文献   

11.
《中国化学会会志》2018,65(6):706-713
Because of its large bandgap, TiO2 can function only under UV light. TiO2 surface modification with noble metal nanoparticles can extend the light absorption from UV to visible light region and enhance the photocatalytic quantum yield. In this work, TiO2 nanorods (Cu/TiO2) modified by copper nanoparticles were prepared by a one‐step solvothermal method at low cost. The resultant Cu/TiO2 nanorods show excellent synergistic effect in the oxidation of methylene blue (MB) and the reduction of aqueous Cr(VI) under solar light irradiation. Mechanistic investigation suggests that the Cr(VI) species could effectively scavenge the electrons from MB in the presence of the as‐prepared photocatalyst, leading to the simultaneous removal of both pollutants. Being economically viable, environmentally sustainable, and highly efficient, the proposed photocatalyst holds promise for technologies involving simultaneous organic degradation and heavy metal removal in wastewater treatment.  相似文献   

12.
Mesoporous TiO2microsphere(MTM)was synthesized via a simple solution route and then mixed with commercial TiO2(P25)to form highly homogeneous and stable TiO2colloid by simple hydrothermal treatment.The TiO2colloid was coated onto the plastic conductive substrate to prepare mesoporous TiO2film for flexible dye-sensitized solar cells(DSSCs)by low-temperature heat treatment.The influence of MTM content on the physicochemical properties of the flexible TiO2film was characterized by scanning electron microscope,transmission electron microscopy,X-ray diffraction,energy-dispersive X-ray spectrometer,N2adsorption-desorption isotherms,UV–vis absorption and diffuse reflectance spectra.It is revealed that with increasing the MTM content,the dye-loading capability of TiO2film and light-harvesting efficiency of flexible DSSCs are improved due to MTM having high surface area and acting as a light scattering center,respectively,resulting in the enhancement of photocurrent of flexible DSSCs.However,more and larger cracks having negative effect on the performances of flexible DSSCs are formed simultaneously.Under the optimal condition with MTM content of 20%,a flexible DSSC with overall light-to-electric energy conversion efficiency of 2.74%is achieved under a simulated solar light irradiation of 100 mW cm 2(AM 1.5),with 26%improvement in comparison with DSSCs based on P25 alone.  相似文献   

13.
Almost vertically aligned ZnO nanowires have been grown on Silicon substrates via a simple hydrothermal method. In order to improve the photoelectric conversion efficiency for fabricated dye-sensitized solar cells (DSSCs), an easily-operated immersing method was employed to fabricate a TiO2/ZnO nanowires array heterojunction, which has advantage of high aspect ratio, low recombination rate and high absorption of visible light. The structure and surface morphology of the samples were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), respectively. The photovoltaic properties of TiO2/ZnO based DSCCs were measured by considering the power efficiency (η), photocurrent density (Jsc), open-circuit voltage (Voc), and fill factor (FF). An efficiency of 0.559% is achieved for the composite cell, increasing 0.426 and 0.185% for the ZnO nanowires cell and TiO2 cell, respectively. The short-circuit current and open-circuit voltage are also enhancing. The improvements are because of high surface are of TiO2 shell layer, as well as fast electron transport and light scattering effect of ZnO nanowires.  相似文献   

14.
In this work, high‐performance dye‐sensitized solar cells (DSSCs) based on new low‐cost visible nickel complex dye (VisDye), TiO2 nanoparticle/nanotube composites electrodes, carbon nanoparticles counter electrodes, and ionic liquids electrolytes have been fabricated. The electronic structure, optical spectroscopy, and electrochemical properties of the VisDye were studied. Experimental results indicate that it is beneficial to improve the electron transport and power conversion efficiency using the nickel complex VisDye and TiO2 nanoparticle/nanotube composites. Under optimized conditions, the solar energy conversion efficiencies were measured. The short‐circuit current density (JSC), the open‐circuit voltage (VOC), the fill factor (FF), and the overall efficiency (η) of the DSSCs are 10.01 mA/cm2, 516 mV, 0.68, and 3.52%, respectively. This study demonstrates that the combination of new VisDye with TiO2 nanoparticle/nanotube composites electrodes and carbon nanoparticles counter electrodes provide a way to fabricate highly efficient dye‐sensitized solar cells in low‐cost production.  相似文献   

15.
TiO2 thin film photocatalysts which could induce photoreactions under visible light irradiation were successfully developed in a single process by applying an ion engineering technique, i.e., the radio frequency (RF) magnetron sputtering deposition method. The TiO2 thin films prepared at temperatures greater than 773 K showed the efficient absorption of visible light; on the other hand, the TiO2 thin films prepared at around 573 K were highly transparent. This clearly means that the optical properties of TiO2 thin films, which absorb not only UV but also visible light, can be controlled by the preparation temperatures of the RF magnetron sputtering deposition method. These visible light responsive TiO2 thin films were found to exhibit effective photocatalytic reactivity under visible light irradiation (λ > 450 nm) at 275 K for the reductive decomposition of NO into N2 and N2O. From various characterizations, the orderly aligned columnar TiO2 crystals could be observed only for the visible light responsive TiO2 thin films. This unique structural factor is expected to modify the electronic properties of a TiO2 semiconductor, enabling the efficient absorption of visible light.  相似文献   

16.
A sol?Cgel method was applied for fabrication of nanocrystalline anatase TiO2 thin films on ITO glass substrates and followed by rapid thermal annealing for application as the work electrode for dye-sensitized solar cells (DSSC). TiO2 nanoparticles were characterized by X-ray diffraction (XRD) pattern and scanning electron microscopy (SEM) and the absorption of dye on the TiO2 electrode was shown by UV?Cvis spectroscopy. By controlling different parameters including numbers of coated layers, the gap between two electrodes, sensitization time, and light source power, TiO2-based solar cells with high efficiency was achieved. The results show that a five time spin-coated TiO2 electrode with applying sealant and sensitization time of 24?h in N3 dye under illumination of 100?W?cm?2 tungsten lamp give the optimum power conversion efficiency (??) of 6.61%. The increases in thickness of TiO2 films by increasing the numbers of coated layers can improve adsorption of the N3 dye through TiO2 layers to increase the open-circuit voltage (V oc). However, short-circuit photocurrents (J sc) of DSSCs with a one-coated layer of TiO2 films are smaller than those of DSSCs with five-coated layer of TiO2 films. It could be due to the fact that the increased thickness of TiO2 thin films also resulted in a decrease in the transmittance of TiO2 thin films. Also, this electrode was employed to photoreduce CO2 with H2O under tungsten lamp as light source.  相似文献   

17.
Designing the photoanode structure in dye‐sensitized solar cells (DSSCs) is vital to realizing enhanced power conversion efficiency (PCE). Herein, novel multifunctional silver‐decorated porous titanium dioxide nanofibers (Ag/pTiO2 NFs) made by simple electrospinning, etching, and chemical reduction processes are introduced. The Ag/pTiO2 NFs with a high surface area of 163 m2 g?1 provided sufficient dye adsorption for light harvesting. Moreover, the approximately 200 nm diameter and rough surface of the Ag/pTiO2 NFs offered enough light scattering, and the enlarged interpores among the NFs in the photoanode also permitted electrolyte circulation. Ag nanoparticles (NPs) were well dispersed on the surface of the TiO2 NFs, which prevented aggregation of the Ag NPs after calcination. Furthermore, a localized surface plasmon resonance effect by the Ag NPs served to increase the light absorption at visible wavelengths. The surface area and amount of Ag NPs was optimized. The PCE of pTiO2 NF‐based DSSCs was 27 % higher (from 6.2 to 7.9 %) than for pure TiO2 NFs, whereas the PCE of Ag/pTiO2 NF‐based DSSCs increased by about 12 % (from 7.9 to 8.8 %). Thus, the PCE of the multifunctional pTiO2 NFs was improved by 42 %, that is, from 6.2 to 8.8 %.  相似文献   

18.
A highly efficient and visible light (λ ≥ 420 nm) responsive nanocomposite photocatalyst Co3O4/WO3 was developed by dispersing p-type semiconductor Co3O4 on the surface of n-type semiconductor WO3. The heterojunction Co3O4/WO3 demonstrated higher photocatalytic activity than WO3, Co3O4 and TiO2 nanoparticles for the complete decomposition of 2-propanol in gas phase and phenol in aqueous phase and evolution of CO2 under visible light irradiation. The highest photocatalytic efficiency of the composite Co3O4/WO3 was observed when calcined at 300 °C for 2 h with 4.91 mol% Co3O4/WO3. The enhanced photocatalytic efficiency of the heterojunction was discussed based on the unique relative energy band positions and profound absorption of visible light by the semiconductors.  相似文献   

19.
In this study, we successfully prepared pure, mono-doped, and Ag, Mg co-doped TiO2 nanoparticles using the sol–gel method, with titanium tetraisopropoxide as the Ti source. The prepared samples were characterized by X-ray powder diffraction (XRD), specific surface area and porosity (BET and BJH) measurement, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, photoluminescence, and energy dispersive X-ray spectroscopy techniques. The XRD data showed that the prepared nanoparticles had the same crystals structures as the pure TiO2. Also, DRS results indicated that the band gap of co-doped photocatalyst was smaller than that of the monometallic and undoped TiO2 and that there was a shift in the absorption band towards the visible light region. Furthermore, the photocatalytic activity of the prepared catalysts was evaluated by the degradation of C.I. Acid Red 27 in aqueous solution under visible light irradiation. The results showed that Ag (0.08 mol%), Mg (0.2 mol%) co-doped TiO2 had the highest photoactivity among all samples under visible light. It was concluded that co-doping of the Ag and Mg can significantly improve the photocatalytic activity of the prepared photocatalysts, due to the efficient inhibition of the recombination of photogenerated electron–hole pairs. The optimum calcination temperature and time were 450 °C and 3 h, respectively.  相似文献   

20.
Single crystalline MnWO4 nanorod has been prepared by low temperature hydrothermal reaction at 180 °C. The prepared MnWO4 possesses band gap of 2.63 eV. Photochemical decomposition method has been followed to disperse Au nanoparticles onto MnWO4 nanorod. The prepared Au loaded MnWO4 nanorod demonstrated greatly enhanced photocatalytic activity in decomposing 2-propanol and evolving CO2 in gas phase and phenol in aqueous phase compared to bare MnWO4 and commercial TiO2 nanoparticles (Degussa P25) under visible light (λ ≥ 420 nm) irradiation. The Au loading was optimized to 3.79 wt% for the highest efficiency. The enhanced photocatalytic activity originates from the absorption of visible light by MnWO4 as well as the introduction of nanoparticulate Au on the surface of MnWO4 as cocatalyst to impede the recombination of photogenerated charge-carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号