首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduce the notion of relative subquadrangle regular system of a generalized quadrangle. A relative subquadrangle regular system of order m on a generalized quadrangle S of order (s, t) is a set \({\mathcal R}\) of embedded subquadrangles with a prescribed intersection property with respect to a given subquadrangle T such that every point of S T lies on exactly m subquadrangles of \({\mathcal R}\) . If m is one half of the total number of such subquadrangles on a point we call \({\mathcal R}\) a relative subquadrangle hemisystem with respect to T. We construct two infinite families of symplectic relative subquadrangle hemisystems of the Hermitian surface \({{\mathcal H}(3,q^2)}\) , q even.  相似文献   

2.
In this paper we establish existence of solutions of singular boundary value problem ?(p(x)y (x))=q(x)f(x,y,py′) for 0<xb and $\lim_{x\rightarrow0^{+}}p(x)y^{\prime}(x)=0$ , α 1 y(b)+β 1 p(b)y (b)=γ 1 with p(0)=0 and q(x) is allowed to have integrable discontinuity at x=0. So the problem may be doubly singular. Here we consider $\lim_{x\rightarrow0^{+}}\frac{q(x)}{p'(x)}\neq0$ therefore $\lim_{x\rightarrow0^{+}}p(x)y'(x)=0$ does not imply y′(0)=0 unless $\lim_{x\rightarrow0^{+}}f(x,y(x),p(x)y'(x))=0$ .  相似文献   

3.
An m-cover of the Hermitian surface \(\mathrm {H}(3,q^2)\) of \(\mathrm {PG}(3,q^2)\) is a set \(\mathcal {S}\) of lines of \(\mathrm {H}(3,q^2)\) such that every point of \(\mathrm {H}(3,q^2)\) lies on exactly m lines of \(\mathcal {S}\), and \(0<m<q+1\). Segre (Annali di Matematica Pura ed Applicata Serie Quarta 70:1–201, 1965) proved that if q is odd, then \(m=(q+1)/2\), and called such a set \(\mathcal {S}\) of lines a hemisystem. Penttila and Williford (J Comb Theory Ser A 118(2):502–509, 2011) introduced the notion of a relative hemisystem of a generalised quadrangle \(\varGamma \) with respect to a subquadrangle \(\varGamma '\): a set of lines \(\mathcal {R}\) of \(\varGamma \) disjoint from \(\varGamma '\) such that every point P of \(\varGamma \setminus \varGamma '\) has half of its lines (disjoint from \(\varGamma '\)) lying in \(\mathcal {R}\). In this paper, we provide an analogue of Segre’s result by introducing relative m-covers of generalised quadrangles of order \((q^2,q)\) with respect to a subquadrangle and proving that m must be q / 2 when the subquadrangle is doubly subtended. In particular, a relative m-cover of \(\mathrm {H}(3,q^2)\) with respect to a symplectic subgeometry \(\mathrm {W}(3,q)\) is a relative hemisystem.  相似文献   

4.
In this paper, we prove that every lax generalized Veronesean embedding of the Hermitian unital ${\mathcal{U}}$ of ${\mathsf{PG}(2,\mathbb{L}), \mathbb{L}}$ a quadratic extension of the field ${\mathbb{K}}$ and ${|\mathbb{K}| \geq 3}$ , in a ${\mathsf{PG}(d,\mathbb{F})}$ , with ${\mathbb{F}}$ any field and d ≥ 7, such that disjoint blocks span disjoint subspaces, is the standard Veronesean embedding in a subgeometry ${\mathsf{PG}(7,\mathbb{K}^{\prime})}$ of ${\mathsf{PG}(7,\mathbb{F})}$ (and d = 7) or it consists of the projection from a point ${p \in \mathcal{U}}$ of ${\mathcal{U}{\setminus} \{p\}}$ from a subgeometry ${\mathsf{PG}(7,\mathbb{K}^{\prime})}$ of ${\mathsf{PG}(7,\mathbb{F})}$ into a hyperplane ${\mathsf{PG}(6,\mathbb{K}^{\prime})}$ . In order to do so, when ${|\mathbb{K}| >3 }$ we strongly use the linear representation of the affine part of ${\mathcal{U}}$ (the line at infinity being secant) as the affine part of the generalized quadrangle ${\mathsf{Q}(4,\mathbb{K})}$ (the solid at infinity being non-singular); when ${|\mathbb{K}| =3}$ , we use the connection of ${\mathcal{U}}$ with the generalized hexagon of order 2.  相似文献   

5.
Let g(x)?=?x n ?+?a n-1 x n-1?+?. . .?+?a 0 be an irreducible polynomial over ${\mathbb{F}_q}$ . Varshamov proved that for a?=?1 the composite polynomial g(x p ?ax?b) is irreducible over ${\mathbb{F}_q}$ if and only if ${{\rm Tr}_{\mathbb{F}_q/\mathbb{F}_p}(nb-a_{n-1})\neq 0}$ . In this paper, we explicitly determine the factorization of the composite polynomial for the case a?=?1 and ${{\rm Tr}_{\mathbb{F}_q/\mathbb{F}_p}(nb-a_{n-1})= 0}$ and for the case a?≠ 0, 1. A recursive construction of irreducible polynomials basing on this composition and a construction with the form ${g(x^{r^kp}-x^{r^k})}$ are also presented. Moreover, Cohen’s method of composing irreducible polynomials and linear fractions are considered, and we show a large number of irreducible polynomials can be obtained from a given irreducible polynomial of degree n provided that gcd(n, q 3 ? q)?=?1.  相似文献   

6.
We give a general construction leading to different non-isomorphic families $\varGamma_{n,q}(\mathcal{K})$ of connected q-regular semisymmetric graphs of order 2q n+1 embedded in $\operatorname{PG}(n+1,q)$ , for a prime power q=p h , using the linear representation of a particular point set $\mathcal{K}$ of size q contained in a hyperplane of $\operatorname{PG}(n+1,q)$ . We show that, when $\mathcal{K}$ is a normal rational curve with one point removed, the graphs $\varGamma_{n,q}(\mathcal{K})$ are isomorphic to the graphs constructed for q=p h in Lazebnik and Viglione (J. Graph Theory 41, 249–258, 2002) and to the graphs constructed for q prime in Du et al. (Eur. J. Comb. 24, 897–902, 2003). These graphs were known to be semisymmetric but their full automorphism group was up to now unknown. For qn+3 or q=p=n+2, n≥2, we obtain their full automorphism group from our construction by showing that, for an arc $\mathcal{K}$ , every automorphism of $\varGamma_{n,q}(\mathcal{K})$ is induced by a collineation of the ambient space $\operatorname{PG}(n+1,q)$ . We also give some other examples of semisymmetric graphs $\varGamma _{n,q}(\mathcal{K})$ for which not every automorphism is induced by a collineation of their ambient space.  相似文献   

7.
Let \(\mathfrak{B}\) be a variety of rings,R a ring of \(\mathfrak{B}\) andx an indeterminate. The free compositionR(x, \(\mathfrak{B}\) ) ofR and the free algebra of \(\mathfrak{B}\) generated byx, is called the \(\mathfrak{B}\) -polynomial ring inx the variety of rings, rings with identity, commutative rings or commutative rings with identity resp. We prove some results about relations between the polynomial ringsR(x, \(\mathfrak{B}\) ), whereR is fixed and \(\mathfrak{B}\) runs over these varieties. Moreover we construct normal form systems for certain polynomial ringsR(x, \(\mathfrak{B}\) ).  相似文献   

8.
Letq be a regular quadratic form on a vector space (V, $\mathbb{F}$ ) and assume dimV ≥ 4 and ¦ $\mathbb{F}$ ¦ ≥ 4. We consider a permutation ? of the central affine quadric $\mathcal{F}$ := {x εV ¦q(x) = 1} such that $$(*)x \cdot y = \mu \Leftrightarrow x^\varphi \cdot y^\varphi = \mu \forall x,y\varepsilon \mathcal{F}$$ holds true, where μ is a fixed element of $\mathbb{F}$ and where “·” is the scalar product associated withq. We prove that ? is induced (in a certain sense) by a semi-linear bijection (σ,?): (V, $\mathbb{F}$ ) → (V, $\mathbb{F}$ ) such thatq o ?o q, provided $\mathcal{F}$ contains lines and the pair (μ, $\mathbb{F}$ ) has additional properties if there ar no planes in $\mathcal{F}$ . The cases μ, 0 and μ = 0 require different techniques.  相似文献   

9.
For q odd and n > 1 odd, a new infinite family of large complete arcs K′ in PG(2, q n ) is constructed from complete arcs K in PG(2, q) which have the following property with respect to an irreducible conic ${\mathcal{C}}$ in PG(2, q): all the points of K not in ${\mathcal{C}}$ are all internal or all external points to ${\mathcal{C}}$ according as q ≡ 1 (mod 4) or q ≡ 3 (mod 4).  相似文献   

10.
We consider the following q-eigenvalue problem for the p-Laplacian $$\left\{\begin{array}{ll}-{\rm div}\big( |\nabla u|^{p-2}\nabla u\big) = \lambda \|u\|_{L^{q}(\Omega)}^{p-q}|u|^{q-2}u \quad \quad\, {\rm in} \,\,\,\, \Omega\\ \quad\quad\quad \quad \quad \quad u = 0 \quad\qquad\qquad \quad\quad \,\,{\rm on } \,\,\,\, \partial\Omega,\end{array}\right.$$ where \({\lambda\in\mathbb{R},}\) p > 1, Ω is a bounded and smooth domain of \({\mathbb{R}^{N},}\) N > 1, \({1\leq q < p^{\star}}\) , \({p^{\star}=\frac{Np}{N-p}}\) if p < N and \({p^{\star}=\infty}\) if \({p\geq N.}\) Let λ q denote the first q-eigenvalue. We prove that in the super-linear case, \({p < q < p^{\star},}\) there exists \({\epsilon_{q}>0}\) such that if \({\lambda\in(\lambda_{q},\lambda _{q}+\epsilon_{q})}\) is a q-eigenvalue, then any corresponding q-eigenfunction does not change sign in Ω. As a consequence of this result we obtain, in the super-linear case, the isolatedness of λ q for those Ω such that the Lane–Emden problem $$\left\{\begin{array}{ll}-{\rm div}\big(|\nabla u|^{p-2}\nabla u\big) = |u|^{q-2}u \qquad\quad\quad\quad \,\,{\rm in}\,\,\,\Omega\\ \quad\quad\quad \quad \quad \quad u = 0 \quad\qquad\qquad \quad\quad \,{\rm on } \,\,\, \partial\Omega,\end{array}\right.$$ has exactly one positive solution.  相似文献   

11.
This paper deals with the very interesting problem about the influence of piecewise smooth boundary conditions on the distribution of the eigenvalues of the negative Laplacian inR 3. The asymptotic expansion of the trace of the wave operator $\widehat\mu (t) = \sum\limits_{\upsilon = 1}^\infty {\exp \left( { - it\mu _\upsilon ^{1/2} } \right)} $ for small ?t? and $i = \sqrt { - 1} $ , where $\{ \mu _\nu \} _{\nu = 1}^\infty $ are the eigenvalues of the negative Laplacian $ - \nabla ^2 = - \sum\limits_{k = 1}^3 {\left( {\frac{\partial }{{\partial x^k }}} \right)} ^2 $ in the (x 1,x 2,x 3), is studied for an annular vibrating membrane Ω inR 3 together with its smooth inner boundary surfaceS 1 and its smooth outer boundary surfaceS 2. In the present paper, a finite number of Dirichlet, Neumann and Robin boundary conditions on the piecewise smooth componentsS * i(i=1, …,m) ofS 1 and on the piecewise smooth componentsS * i(i=m+1, …,n) ofS 2 such that $S_1 = \bigcup\limits_{i = 1}^m {S_i^* } $ and $S_2 = \bigcup\limits_{i = m + 1}^n {S_i^* } $ are considered. The basic problem is to extract information on the geometry of the annular vibrating membrane ω from complete knowledge of its eigenvalues by analyzing the asymptotic expansions of the spectral function $\widehat\mu (t)$ for small ?t?.  相似文献   

12.
Using Shelah’s revised GCH theorem we prove that if μ<? ω λ are cardinals, then every μ-almost disjoint family ${\mathcal{A}}\subset {[\lambda]}^{\beth_{\omega}}$ is essentially disjoint, i.e. for each ${A\in {\mathcal{A}}}$ there is a set F(A)∈[A]<|A| such that the family $\{{A\setminus F(A)}: {A\in {\mathcal{A}}}\}$ is disjoint. We also show that if μκλ are cardinals, κω, and
  • every μ-almost disjoint family ${\mathcal{A}}\subset {[\lambda]}^{{\kappa}}$ is essentially disjoint,
then
  • every μ-almost disjoint family ${\mathcal {B}}\subset {[\lambda]}^{\geqq {\kappa}}$ has a conflict-free coloring with κ colors, i.e. there is a coloring f:λκ such that for all ${B\in {\mathcal{B}}}$ there is a color ξ<κ such that |{βB:f(β)=ξ}|=1.
Putting together these results we obtain that if μ<? ω λ, then every μ-almost disjoint family ${{\mathcal{B}}\subset {[\lambda]}^{\geqq \beth_{\omega}}}$ has a conflict-free coloring with ? ω colors. To yield the above mentioned results we also need to prove a certain compactness theorem concerning singular cardinals.  相似文献   

13.
14.
15.
Let S be an orthogonal polytope in ${\mathbb{R}^d}$ . There exists a suitable family ${\mathcal{C}}$ of boxes with ${S = \cup \{C : C {\rm in} \mathcal{C}\}}$ such that the following properties hold:
  • The staircase kernel Ker S is a union of boxes in ${\mathcal{C}}$ . Let ${\mathcal{V}}$ be the family of vertices of boxes in ${\mathcal{C}}$ , and let ${v_o\, \epsilon \mathcal{V}}$ . Point v o belongs to Ker S if and only if v o sees via staircase paths in S every point w in ${\mathcal{V}}$ . Moreover, these staircase paths may be selected to consist of edges of boxes in ${\mathcal{C}}$ . Let B be a box in ${\mathcal{C}}$ with vertices of B in Ker S. Box B lies in Ker S if and only if, for some b in rel int B and for every translate H of a coordinate hyperplane at ${b, b \epsilon}$ Ker (HS). For point p in S, p belongs to Ker S if and only if, for every x in S, there exist some p ? x geodesic λ (p, x) and some corresponding ${\mathcal{C}}$ - chain D containing λ (p, x) such that D is staircase starshaped at p.
  •   相似文献   

    16.
    Letq be a regular quadratic form on a vector space (V, $\mathbb{F}$ ) and assume $4 \leqslant dim V \leqslant \infty \wedge |\mathbb{F}| \in \mathbb{N}$ . A 1-isometry of the central quadric $\mathcal{F}: = \{ x \in V|q(x) = 1\}$ is a permutation ? of $\mathcal{F}$ such that (*) $$q(x - y) = \nu \Leftrightarrow q(x^\varphi - y^\varphi ) = \nu \forall x,y \in \mathcal{F}$$ holds true for a fixed element ν of $\mathbb{F}$ . For arbitraryν $\mathbb{F}$ we prove that? is induced (in a certain sense) by a semi-linear bijection $(\sigma ,\varrho ):(V,\mathbb{F}) \to (V,\mathbb{F})$ such thatq oσ =? oq, provided $\mathcal{F}$ contains lines and the exceptional case $(\nu = 2 \Lambda |\mathbb{F}| = 3 \Lambda \dim V = 4 \Lambda |\mathcal{F}| = 24)$ is excluded. In the exceptional case and as well in case of dim V = 3 there are counterexamples. The casesν ≠ 2 and v=2 require different techniques.  相似文献   

    17.
    Let pqd+1 be positive integers and let ${\mathcal{F}}$ be a finite family of convex sets in ${\mathbb{R}}^{d}$ . Assume that the elements of ${\mathcal{F}}$ are coloured with p colours. A p-element subset of ${\mathcal{F}}$ is heterochromatic if it contains exactly one element of each colour. The family ${\mathcal{F}}$ has the heterochromatic (p,q)-property if in every heterochromatic p-element subset there are at least q elements that have a point in common. We show that, under the heterochromatic (p,q)-condition, some colour class can be pierced by a finite set whose size we estimate from above in terms of d,p, and q. This is a colourful version of the famous (p,q)-theorem. (We prove a colourful variant of the fractional Helly theorem along the way.) A fractional version of the same problem is when the (p,q)-condition holds for all but an α fraction of the p-tuples in ${\mathcal{F}}$ . We show that, in the case that d=1, all but a β fraction of the elements of ${\mathcal{F}}$ can be pierced by p?q+1 points. Here β depends on α and p,q, and β→0 as α goes to zero.  相似文献   

    18.
    Let ${\Phi_{k,g}}$ be the class of all k-edge connected 4-regular graphs with girth of at least g. For several choices of k and g, we determine a set ${\mathcal{O}_{k,g}}$ of graph operations, for which, if G and H are graphs in ${\Phi_{k,g}}$ , GH, and G contains H as an immersion, then some operation in ${\mathcal{O}_{k,g}}$ can be applied to G to result in a smaller graph G′ in ${\Phi_{k,g}}$ such that, on one hand, G′ is immersed in G, and on the other hand, G′ contains H as an immersion.  相似文献   

    19.
    In 1965, Lu Yu-Qian discovered that the Poisson kernel of the homogenous domain S m,p,q={Z∈Cm×m, Z1∈Cm×p,Z2 ∈Cq×m|2i1( Z-Z+)-Z1Z1′-Z2′Z20} does not satisfy the Laplace-Beltrami equation associated with the Bergman metric when S m,p,q is not symmetric. However the map T0:Z→Z, Z1→Z1 , Z2→Z2 transforms S m,p,q into a domain S I (m, m + p + q) which can be mapped by the Cayley transformation into the classical domains R I (m, m + p + q). The pull back of the Bergman metric of R I (m, m + p + q) to S m,p,q is a Riemann metric ds 2 which is not a Khler metric and even not a Hermitian metric in general. It is proved that the Laplace-Beltrami operator associated with the metric ds 2 when it acts on the Poisson kernel of S m,p,q equals 0. Consequently, the Cauchy formula of S m,p,q can be obtained from the Poisson formula.  相似文献   

    20.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号