首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Usual ferroelectric compounds undergo a paraelectric-to-ferroelectric phase transition when the susceptibility of the electric polarization density changes its sign. The temperature is the only thermodynamic field that governs the phase transition. Chiral tilted smectics may also present an improper ferroelectricity when there is a tilt angle between the average long axis direction and the layer normal. The tilt angle is the order parameter of the phase transition which is governed by the temperature. Although the electric susceptibility remains positive, a polarization proportional to the tilt appears due to their linear coupling allowed by the chiral symmetry. Further complications come in when the chirality increases, as new phases are encountered with the same tilt inside the layers but a distribution of the azimuthal direction which is periodic with a unit cell of two (SmC(A)*, three (SmC(Fi1)*, four (SmC(Fi2)* or more (SmC(alpha)* layers. In most of these phases, the layer normal is a symmetry axis so there is no macroscopic polarization except for the SmC(Fi1)* in which the average long axis is tilted so the phase is ferrielectric. By studying a particular compound with only a SmC(Fi2)* and a SmC(alpha)* phase, we show that we recover the uniformly tilted ferroelectric SmC* when applying an electric field. We are thus led to build field-temperature phase diagrams for this class of compounds by combining different experimental techniques described here.  相似文献   

2.
Influence of the electric field upon alignment of molecules in ferro- and antiferroelectric phases has been studied for two fluoro-substituted compounds exhibiting antiferroelectric phase at room temperature. Two different relaxation processes have been revealed in the ferroelectric as well as antiferroelectric phase. Low temperature value of spontaneous polarization is ca. 130 nC/cm2 for both substances studied. The substances align very well in the external electric field — a mono-domain of the ferroelectric SmC* phase can be obtained in about 3.5 hours.  相似文献   

3.
In order to study the shifting of phase transition temperature of ferroelectric liquid crystals due to addition of dye molecules, we have investigated two ferroelectric liquid crystal materials (Felix 16/030 and Felix 16/100) and their five mixtures with Anthraquinone dye (1%, 2%, 3%, 4% and 5% wt/wt). The phase transition scheme has been investigated and analyzed by results obtained from the optical transmittance and the dielectric permittivity study with variation of temperature in the range of 30 to 100 °C. Both the samples clearly show the shifting of phase transition temperature with dye concentration, especially the SmC*-SmA phase transition temperature. It is also clear from the study that SmC*-SmA phase transition phenomenon also becomes stronger with the addition of dye molecules. A theoretical explanation has also been given for shifting of phase transition temperature. The amount of shift in transition temperature agrees well as obtained from optical and dielectric studies.  相似文献   

4.
We study the effects of mixing ferroelectric and antiferroelectric liquid-crystal compounds (FLCs and AFLCs) when the former are strictly synclinic and the latter strictly anticlinic, i.e. one mixture component exhibits only SmC* and the other only SmC a* as tilted phase. Three different paths between syn- and anticlinicity were detected: transition directly between SmC* and SmC a*, transition via the SmCβ* and SmCγ* subphases, or by “escaping” the clinicity frustration by reducing the tilt to zero, i.e. the SmA* phase is extended downwards in temperature, separating SmC* from SmC a* in the phase diagram. The most common path is the one via the subphases, demonstrating that these phases appear as a result of frustration between syn- and anticlinic and, consequently, between syn- and antipolar order. For assessing the role of chirality, we also replaced the FLC with non-chiral synclinics. With one of the AFLCs, the route via supbhases was detected even in this case, suggesting that chirality --although necessary-- does not have quite the importance that has previously been attributed to the appearance of the subphases. The path chosen in the mixture study seemed to be determined mainly by the synclinic component, the subphase induction occurring only when the SmA*-SmC* transition was second order.  相似文献   

5.
The recent discovery of the new smectic-C(d6)(*) (SmC(d6)(*)) phase [S. Wang et al., Phys. Rev. Lett. 104, 027801 (2010)] also revealed the existence of a noisy region in the temperature window between the SmC(d6)(*) phase and the smectic-C(d4)(*) (SmC(d4)(*)) phase. Characterized by multiple resonant peaks spanning a wide region in Q(Z), the corresponding structure of this temperature window has been a mystery. In this Letter, through a careful resonant x-ray diffraction study and simulations of the diffraction spectra, we show that this region is in fact an unusually large coexistence region of the SmC(d6)(*) phase and the SmC(d4)(*) phase. The structure of the noisy region is found to be a heterogeneous mixture of local SmC(d6)(*) and SmC(d4)(*) orders on the sub-μm scale.  相似文献   

6.
Mixture of two liquid crystalline components exhibits the antiferroelectric phase in a broad temperature range at room temperatures, though the two components separately do not show an antiferroelectric phase in a temperature range applied. The dielectric spectroscopy technique combined with measurements of the selective light reflection was used for identification and characterization of the phases and subphases existing in the mixture. In the SmC*A phase, the low frequency mode characteristic of antiferroelectric phase has been detected. In the broad temperature range between SmC*A and SmA* phases, no relaxation mode has been detected. The soft mode registered near the phase transition to SmA* phase follows the Curie-Weiss law.  相似文献   

7.
Thermal effects in some nanoporous silicate matrices (with different pore sizes) loaded with ferroelectric NaNO2 from both a saturated solution and from a melt have been studied in a wide temperature range including the phase transition temperatures. All the samples reliably demonstrate maxima of the heat capacity, corresponding to first-order ferroelectric phase transitions. The characteristics of the maxima (intensity, half-width, phase transition temperature, etc.) have been determined. A more complex situation is the observation of an incommensurable phase (sinusoidal antiferroelectric), in particular, in the case of pore sizes comparable to the period of an “incommensurable” wave, the manifestation of which can be explained by the appearance of a corresponding orientation of sodium nitrite nanocrystals in pores of these matrices. It is found that the characteristics of above noted effects depend on the prehistory of the samples under study.  相似文献   

8.
Y. Mieda  K. Furutani 《哲学杂志》2013,93(24):3555-3564
By using an analogy with the Maier–Saupe theory of the nematic phase, a mean field theory of the chiral smectic-C (SmC*) phase is constructed. As an order parameter of the SmC* phase, the tilt angle θ is selected, and the feedback effect of θ is introduced into the hindered rotational potential about the molecular long axis. By solving the self-consistent equation for the order parameter θ, the second-order phase transition appears. Also, to describe the SmA–SmC* phase transition under an electric field, a coupling term between a molecular dipole moment and an external electric field is introduced to the potential function. The electroclinic effect in the SmA phase and the hysteresis effect in the SmC* phase, which were described phenomenologically in the past, are found directly from the microscopic theory.  相似文献   

9.
In the paper we consider size effects on phase transitions and polar properties of thin antiferroelectric films. We extend the phenomenological approach proposed by Kittel for thin films allowing for gradient (correlation) energy and depolarization field energy. Surface piezoelectric effect as well as misfit strain appear due to lattice constants mismatch between the film and its substrate. Direct variational method is used to derive the free energy with renormalized coefficients depending on the film thickness. Obtained free energy expression allows the calculation of phase diagrams and all electro-physical properties by a conventional minimization procedure. Approximate analytical expressions for the paraelectric–antiferroelectric–ferroelectric transition temperature dependences on film thickness, polarization gradient coefficient, and extrapolation lengths were obtained. The thickness dependence of the electric field critical value that causes antiferroelectric–ferroelectric phase transition was calculated. Under favorable conditions the antiferroelectric phase at first transforms into ferroelectric one and then into paraelectric phase with the decrease of the film thickness. Proposed theoretical consideration explains the experimental results obtained in antiferroelectric PbZrO3 thin films.  相似文献   

10.
The most important goal of our research is to show the influence of the ‘guest’ (bent-core mesogen, 1,3-phenyldicarboxylatebis{4-[(4-octylbenzoyl)sulphanyl]phenyl} [IFOS8], banana-shaped liquid crystal [BLC]) on the ‘host’ (calamitic liquid crystal [CLC], (S)-(+)-1-methylheptyloxybiphenyl-(4-n-octylphenyl)thiobenzoate [MHOBS8]), on the stability and the destabilization of the antiferroelectric B2 and the ferroelectric smectic C* (SmC*) phases, and change of the temperature ranges of other phases in the binary liquid crystal mixtures. This work is focused on polymorphism of three new binary liquid crystal mixtures, exhibiting a ‘guest–host’ (guest liquid crystal–host liquid crystal [GH-LC]) effect. MHOBS8 has, among others, a ferroelectric SmC* phase, and IFOS8 assumes the B2 phase with antiferroelectric properties. The observed properties of the mixtures, such as variation of the phase transition temperatures, spontaneous polarization, tilt angle and switching time, are characteristic of a ‘guest–host’ mixture. The influence of BLC on the character of the interactions within the CLC host is discussed, with particular attention paid to electro-optical properties of the GH-LC mixtures.  相似文献   

11.
We present the results based on the electro-optic and dielectric properties of silica nanoparticle (SNP) doped ferroelectric liquid crystal (FLC) in SmC* phase. Switching time, spontaneous polarization and rotational viscosity decreases with increase in the silica concentration. An improvement in switching time after doping the silica nanoparticle is due to enhancement in anchoring energy exist between silica nanoparticle and ferroelectric liquid crystal. We noticed that the dielectric permittivity and dielectric strength decreases with increasing the concentration of silica nanoparticle in SmC* phase. Relaxation frequency increases with increasing the silica concentration and temperature in SmC* and decreases as we approaches towards transition temperature.  相似文献   

12.
We study the possibility of spontaneous formation of a polarization structure in a thermodynamically equilibrium gas of dipolarly interacting two-level molecules. Using the Maxwell-Bloch equations within the framework of the mean-field theory, we find that the antiferroelectric phase transition in a gas with a weak relaxation of the polarization is always a second-order transition. It is shown that if relaxation is neglected, then in the quasi-classical consideration of the translational motion of molecules in the polarization wave, the energy levels of a separate molecule coincide with its quasi-energies that are well known in quantum optics. Thus, to study the statistical properties of the antiferroelectric phase, we apply the generalized Gibbs distribution over quasi-energy states of the molecules. As a result, we determine the characteristic features and the possible parameters of the antiferroelectric state of a gas. In particular, it is found that, owing to the Doppler resonance of part of the molecules with the polarization wave, the properties of the gas antiferroelectrics behind the phase-transition point may radically differ from the properties of the conventional ferroelectrics in the Ginzburg-Landau theory. We also analyze the influence of polarization fluctuations for the case of a ferroelectric transition in a gas.  相似文献   

13.
戴中华  姚熹  徐卓 《物理学报》2009,58(5):3520-3524
采用掺铌的锆钛锡酸铅(PNZST)反铁电陶瓷作为研究对象,研究了不同的直流电场作用下,等静压力诱导极化态反铁电陶瓷发生去极化过程(同时发生铁电/反铁电相变)的规律.当极化态样品两端电场强度为6 kV/cm时,去极化压力为128.8 MPa;当极化态样品两端电场强度为-6 kV/cm时,去极化压力为74.2 MPa.在与极化电场方向相反的外加电场作用下极化态样品具有较小的去极化压力.讨论了外加直流电场影响极化态反铁电陶瓷去极化压力的内在机理.得到了不同外置电场下的去极化压力,并绘制了该材料的外加直流电场(< 关键词: 去极化 反铁电体 相变  相似文献   

14.
A theoretical study is made of the process by which an antiferroelectric smectic liquid crystal undergoes a field-induced transition to ferroelectric alignment. We find that for cells of moderate thickness the initial departure from antiferroelectric alignment occurs as a continuous Fréedericksz transition. The following transition from partial alignment to complete ferroelectric ordering may occur as either a first-order or continuous transition, depending on the relative strength of some of the model parameters. The case where the transition is continuous provides a possible mechanism for some recently observed thresholdless transitions in these systems.  相似文献   

15.
Raman spectroscopic measurements were carried out in the temperature range 10–300 K to understand the low‐temperature antiferroelectric (AFE)–ferroelectric (FE) phase transition in NaNbO3. Several modes in the low wavenumber range were found to disappear, while some new modes appeared across the transition. The temperature dependence of mode wavenumbers suggests that, during cooling, the AFE–FE phase transition begins to occur at 180 K, while the reverse transition starts at 260 K during heating. During cooling, the two phases were found to coexist in the temperature range of 220–160 K. Upon heating, the FE phase is retained up to 240 K and both FE and AFE phases coexist in the temperature range 240–300 K. In contrast to the earlier reports, the present results suggest a different coexistence region and the reverse transition temperature. The reported relaxor‐type FE behaviour over a broad temperature is consistent with the observed coexistence of phases during cooling and heating cycles. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Frequency and temperature dependence of dielectric parameters of a liquid crystalline compound (S)-4-(1-methylheptyloxycarbonyl)phenyl-4′-(6-pentanoyloxyhex-1-oxy)biphenyl-4-carboxylate under planar orientation of the molecules have been investigated in the frequency range 1 Hz-10 MHz. This compound possesses smectic paraelectric (SmA*), ferroelectric (SmC*) and antiferroelectric (SmCA*) phases. Dielectric spectroscopy suggests the existence of a relaxation mechanism in the SmA* phase, which behaves as a soft mode. In the SmC* phase two relaxation modes are observed. One mode continues from the SmA* phase with decreasing dielectric strength and the other has characteristics of the Goldstone mode. Two dielectric relaxation modes have been observed for the SmCA* phase. These two modes are related to the antiferroelectric ordering and the helical structure of the SmCA* phase.  相似文献   

17.
(Pb1? x Ba x )ZrO3 ceramics for the composition range 0?≤?x?≤?0.30 were prepared by the mixed oxide solid state reaction method. Phase transition was studied by dielectric and dilatometric measurements. The ferroelectric to paraelectric phase transition temperature was progressively shifted to a lower temperature by replacing lead with barium. The x?=?0.20 sample showed the maximum dielectric constant of 16,300 at the transition temperature. For compositions 0?≤?x?≤?0.075, the antiferroelectric to ferroelectric phase transition exhibited a large linear thermal expansion. However, the antiferroelectric to ferroelectric phase transition did not exist for 0.10?≤?x?≤?0.30 samples. A phase diagram for PBZ ceramics prepared by the conventional mixed oxide method was also present.  相似文献   

18.
The antiferroelectric (Pb0.985Sm0.01) (Zr1-xTix)O3 (Ti-PSZO) thin films were synthesized on Pt(111)/Ti/SiO2/Si substrates using a chemical solution deposition method. The films were crystallized in the perovskite phase with a preferential orientation along (111) direction. With Ti doping in PSZO, a gradual transformation from antiferroelectric to ferroelectric phase transition was noticed at room temperature owing to the Ti doping induced lattice distortion. The phase transition has been confirmed through the P - E hysteresis loops, X-ray diffraction (peak shifting), capacitance-voltage measurements, and Raman scattering analysis. The thin film with Ti = 0.15 doping displayed a ferroelectric behavior with high dielectric constant and large dielectric tunability of about 62%. Also, Ti doping altered the Curie temperature (Tc) and enhanced the order of dielectric diffuseness. It is believed that Ti-doping in PSZO is an effective way to induce an antiferroelectric - ferroelectric phase transition and to tailor the electrical characteristics of PSZO thin films.  相似文献   

19.
In this paper we discuss the direct isotropic to chiral smectic-C phase transition on the basis of a phenomenological theory. The model free energy is written in terms of the coupled order parameters including the spontaneous polarization. We present a detailed analysis of the different phases that can occur and analyze the question under which conditions a direct isotropic to chiral smectic-C phase transition is possible when compared to other phase transitions. On the basis of this model the isotropic-smectic-C* transition is always of first order. The theoretical predictions are compared with the available experimental results.-1  相似文献   

20.
The study of the smectic-A to chiral smectic-C(*) phase transition of the liquid crystal S-(+)-[4-(2(')-methyl butyl) phenyl 4(')-n-octylbiphenyl-4-carboxylate] (CE8) containing dispersed hydrophilic aerosils reveals novel properties, important to understanding quenched disorder and confinement in ferroelectric liquid crystals. Smectic layer compression leads to a distribution of transition temperatures inducing smearing of the macroscopic data across the transition. A pronounced confinement-induced pretransitional tilted order is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号