首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The observation of the strong suppression of high-p t hadrons in heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) at BNL has motivated a large experimental program using hard probes to characterize the deconfined medium created. However, what can be denoted as “leading particle” physics accessible at RHIC presents some limitations which motivate at higher energy the study of much more penetrating objects: jets. The gain in center-of-mass energy expected at the Large Hadron Collider (LHC) at CERN will definitively improve our understanding on how the energy is lost in the system, opening a major new window of study: the physics of jets on an event-by-event basis. We will concentrate on the expected performance for jet reconstruction in ALICE using the EMCal calorimeter. (for the ALICE Collaboration) The text was submitted by the author in English.  相似文献   

4.
At LHC energies, the Lorentz factor will be 3400 for Pb+Pb collisions, and the electromagnetic interactions will play important roles. The cross sections for the electromagnetic particle productions are very large and cannot be ignored for the lifetimes of the beams and background. In this article, we are going to study some of the electromagnetic processes at the RHIC and the LHC and show the cross section calculations of the electron-positron pair production with the giant dipole resonance of the ions.  相似文献   

5.
We calculate the production of prompt and thermal photons which includes the contribution of gluons in relativistic heavy ion collisions with the equilibrium and non-equilibrium quark-gluon plasma. We develop a new thermal jet-photon conversion mechanism which plays a vital role in the low transverse momentum region. The effect of the non-equilibrium quark-gluon plasma enhances the contribution of the thermal photons. The shadowing and iso-spin of the nucleus which can properly estimate the prompt photon production are also considered in our calculation.  相似文献   

6.
We use recent nuclear parton distributions, among them the Hirai — Kumano — Nagai (HKN) and Eskola — Paukkunen — Salgado (EPS08) parameterizations, in our pQCD-improved parton model to calculate the nuclear modification factor, R AA′ (p T ), at RHIC and at the LHC. At RHIC, the deuteron-gold nuclear modification factor for pions, measured at p T ≥ 10 GeV/c in central collisions, appears to deviate more from unity than the model results. The slopes of the calculated R dAu (p T ) are similar to the slopes of the PHENIX pion and photon data. At LHC, without final-state effects we see a small enhancement of R dPb (p T ) in the transverse momentum range 10 GeV/c ≥ p T ≥ 100 GeV/c for most parameterizations. The inclusion of final-state energy loss will reduce the R dPb (p T ) values.  相似文献   

7.
We summarize the calculation of Drell-Yan transverse-momentum distributions using QCD perturbation theory. In particular, the transversemomentum spectrum of low-mass Drell-Yan pairs is calculated with all-order resummation. We demonstrate that the transverse-momentum distribution of low-mass Drell-Yan pairs is an advantageous source of constraints on the gluon distribution and its nuclear dependence. We argue that low-mass Drell-Yan pairs in the forward region provide a good and clean probe of small-x gluons at RHIC and LHC.  相似文献   

8.
We present a summary of the physics of gluon saturation and non-linear QCD evolution at small values of the parton momentum fraction x in the proton and nucleus in the context of recent experimental results at HERA and RHIC. The rich physics potential of low-x studies at the LHC, especially in the forward region, is discussed and some benchmark measurements in pp, pA and AA collisions are introduced.  相似文献   

9.
Charmonium production at heavy-ion colliders is considered within the comovers-interaction model. The formalism is extended by including possible secondary J/ψ production through recombination and an estimate of recombination effects is made without adjusting the model parameters. The comovers-interaction model also includes a comprehensive treatment of initial-state nuclear effects, which are discussed in the context of such high energies. With these tools, the model properly describes the centrality and the rapidity dependence of experimental data at RHIC energy,  GeV, for both Au+Au and Cu+Cu collisions. Predictions for LHC,  TeV, are presented and the assumptions and extrapolations involved are discussed.  相似文献   

10.
S. Dasu 《Pramana》2004,62(2):177-190
The large hadron collider (LHC) and its detectors, ATLAS and CMS, are being built to study TeV scale physics, and to fully understand the electroweak symmetry breaking mechanism. The Monte-Carlo simulation results for the standard model and minimal super symmetric standard model Higgs boson searches and parameter measurements are discussed. Emphasis is placed on recent investigations of Higgs produced in association with top quarks and in vector boson fusion channels. These results indicate that Higgs sector can be explored in many channels within a couple of years of LHC operation, i.e.,L = 30 fb−1. Complete coverage including measurements of Higgs parameters can be carried out with full LHC program.  相似文献   

11.
The collective effect of emission by the forward moving partons of high energy Cherenkov gluons in nucleus-nucleus collisions at RHIC and LHC energies is considered. It can reveal itself as peaks in the pseudorapidity distribution of jets at midrapidities, or as a ring-like structure of individual events in event-by-event analysis. The pseudorapidity distribution of centers of dense isolated groups of particles in the HIJING model is determined. It can be considered as the background for Cherenkov gluons. If peaks above this background are found in experiments, they indicate new collective effects. In memory of E.L. Feinberg  相似文献   

12.
The aim of this work is to extend to LHC the results observed for two-particle correlations at RHIC, especially in terms of jet quenching effects. In this study a parton quenching model developed in the BDMPS-Z-SW framework is considered and implemented as an afterburner for PYTHIA and HIJING. A simplified parametrization of the quenching mechanism at the parton level is included in one of the most popular Monte Carlo event generators for AA collisions, HIJING. The simulation method, tuned on the RHIC data, is then used to make predictions for the LHC energy regime in order to probe the scenario we will study in the ALICE experiment.  相似文献   

13.
We show that pQCD factorization incorporated with pre-hadronization energy-loss effect naturally leads to flatness of the nuclear modification factor RAARAA for produced hadrons at high transverse momentum pTpT. We consider two possible scenarios for the pre-hadronization: In scenario 1, the produced gluon propagates through dense QCD medium and loses energy. In scenario 2, all gluons first decay to quark–antiquark pairs and then each pair loses energy as propagating through the medium. We show that the estimates of the energy-loss in these two different models lead to very close values and is able to explain the suppression of high-pTpT hadrons in nucleus–nucleus collisions at RHIC. We show that the onset of the flatness of RAARAA for the produced hadron in central collisions at midrapidity is about pT≈15pT15 and 25 GeV at RHIC and the LHC energies, respectively. We show that the smallness (RAA<0.5RAA<0.5 ) and the high-pTpT flatness of RAARAA obtained from the kTkT factorization supplemented with the Balitsky–Kovchegov (BK) equation is rather generic and it does not strongly depend on the details of the BK solutions. We show that energy-loss effect reduces the nuclear modification factor obtained from the kTkT factorization about 30–50% at moderate pTpT.  相似文献   

14.
Presented are the Tevatron Run I QCD results that have been known for the degree of controversy associated with them. Also, the prospects for the QCD-motivated studies at Tevatron Run II and LHC are briefly discussed.  相似文献   

15.
We consider extensions of the next-to-minimal supersymmetric model (NMSSM) in which the observed neutrino masses are described in terms of effective dimension six (or seven) rather than dimension five operators. All such operators respect the discrete symmetries of the model. The new particles associated with the double (or triple) seesaw mechanism can have sizable couplings to the known leptons, even with a TeV seesaw scale. In the latter case some of these new short-lived particles could be produced and detected at the LHC.  相似文献   

16.
The structure of hadron–hadron correlations is investigated in proton–proton (pp)(pp) collisions. We focus on the transmission of the initial transverse momenta of partons (“intrinsic kTkT”) to the hadron–hadron correlations. Values of the intrinsic transverse-momentum obtained from experimental correlations are compared to the results of a model with partially randomized parton transverse momenta at ISR and RHIC energies. Procedures for extracting the correlations from data are discussed.  相似文献   

17.
18.
Within the framework of a factorization model, we study the behaviour of nuclear modification factor in Au Au collisions at RHIC and Pb-Pb collisions at LHC. We find that the nuclear modification factor is inversely proportional to the radius of the quark-gluon plasma and is dominated by the surface emission of hard jets. We predict the nuclear modification factor R^LHC AA - 0.15 in central Pb-Pb collisions at LHC. The study shows that the factorization model can be used to describe the centrality dependence of nuclear modification factor of the high transverse momentum particles produced in heavy ion collisions at both RHIC and LHC.  相似文献   

19.
We study the mechanism and probability of in-medium hadronization in the deconfined medium produced in heavy-ion collisions at RHIC and LHC. We show the likelihood of color-neutral objects to be formed inside the partonic fireball and the probability of these states to escape the medium with reduced interaction strength and energy loss. We will suggest specific measurements that are sensitive to the early degrees of freedom and show predictions for these measurements at RHIC and the LHC.  相似文献   

20.
Abhay Deshpande 《Pramana》2003,61(5):859-864
In 2001–2002 the relativistic heavy-ion collider (RHIC) at the Brookhaven National Laboratory (BNL) was first commissioned for polarized proton collisions. Polarized protons were injected into the RHIC, accelerated to 100 GeV, stored and the two beams were made to collide in four interaction regions. I will review the progress made by the RHIC spin program, followed by the physics goals for the next few years. After that I will present a brief overview of a proposal to build a high intensity polarized electron/positron beam facility at BNL which would enable deep inelastic scattering (DIS) experiments to be pursued at BNL by its collisions with the RHIC hadron beams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号