首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have measured the luminescent properties of single crystals of LiAl5O8:Fe3+. In addition to a zero-phonon line due to Fe3+ in A-sites, we have observed another sharp fluorescent line at 699.2 nm which we assign to Fe3+ occupying B-sites. The excitation spectrum of the B-site Fe3+ shows characteristics similar to those of the A-site Fe3+ but are also shifted towards longer wavelengths. The spectra of the single crystals are compared with those of ordered and disordered powder samples.  相似文献   

2.
NiAlxFe2−xO4 and Ni1−yMnyAl0.2Fe1.8O4 ferrites were prepared by the conventional ceramic method and were characterized by X-ray diffraction, scanning electron microscopy, and magnetic measurements. The single spinel phase was confirmed for all prepared samples. A proper explanation of data is possible if the Al3+ ions are assumed to replace Fe3+ ions in the A and B sites simultaneously for NiAlxFe2−xO4 ferrites, and if the Mn2+ ions are assumed to replace Ni2+ ions in the B sites for Ni1−yMnyAl0.2Fe1.8O4 ferrites. Microstructural factors play an important role in the magnetic behavior of Ni1−yMnyAl0.2Fe1.8O4 ferrites with large Mn2+ content.  相似文献   

3.
高潭华  刘慧英  张鹏  吴顺情  杨勇  朱梓忠 《物理学报》2012,61(18):187306-187306
采用基于密度泛函理论的第一性原理方法, 在广义梯度近似(GGA)和GGA+U方法下对尖晶石型LiMn2O4及其Al掺杂 的尖晶石型LiAl0.125Mn1.875O4晶体的结构和电子性质进行了计算. 结果表明: 采用GGA方法得到尖晶石型LiMn2O4是立方晶系结构, 其中的Mn离子为+3.5价, 无法解释它的Jahn-Teller 畸变. 给出的LiMn2O4能带结构特征也与实验结果不符. 而采用GGA+U方法得到在低温下的LiMn2O4和其掺杂 体系LiAl0.125Mn1.875O4的晶体都是正交结构, 与实验一致. 也能明确地确定Mn的两种价态Mn3+/Mn4+的分布并且能够说明Mn3+O6z方向有明显的Jahn-Teller 畸变, 而Mn4+O6则没有畸变. LiMn2O4的能带结构与实验比较也能够符合. 采用GGA+U方法对Al掺杂体系的LiAl0.125Mn1.875O4的研究表明, 用Al替换一个Mn不会明显地改变晶体的电子性质, 但可以有效地消除Al3+O6 八面体的Jahn-Teller畸变, 从而改善正极材料LiMn2O4的性能, 这与电化学实验的观察结果相一致.  相似文献   

4.
Complex magnetic, magnetoelectric and magnetoelastic studies of spontaneous and field-induced phase transitions in TmMn2O5 were carried out. In the vicinity of spontaneous phase transition temperatures (35 and 25 K) the magnetoelectric and magnetoelastic dependences demonstrated the jumps of polarization and magnetostriction induced by the field ∼150 kOe. These anomalies can be attributed to the influence of magnetic field on the conditions of incommensurate-commensurate phase transition at 35 K and the reverse one at 25 K. In b-axis dependences the magnetic field-induced spin-reorientation phase transition was also observed below 20 K. Finally the magnetoelectric anomaly associated with metamagnetic transition is observed below the temperature of rare-earth subsystem ordering at relatively small critical fields of 5 kOe. This variety of spontaneous and induced phase transitions in RMn2O5 stems from the interplay of three magnetic subsystems: Mn3+, Mn4+, R3+. The comparison with YMn2O5 highlights the role of rare earth in low-temperature region (metamagnetic and spin-reorientation phase transitions), while the phase transition at higher temperatures between incommensurate and commensurate phases should be ascribed to the different temperature dependences of Mn3+ and Mn4+ ions. The strong correlation of magnetoelastic and magnetoelectric properties observed in the whole class of RMn2O5 highlights their multiferroic nature.  相似文献   

5.
The paper is dedicated to investigation of the Mn2+ luminescence in Tb3Al5O12 (TbAG) garnet, as well as the processes of excitation energy transfer between host cations (Tb3+ ions) and activators (Mn2+ and Mn2+-Ce3+ pair ions) in single crystalline films of TbAG:Mn and TbAG:Mn,Ce garnets which can be considered as promising luminescent materials for conversion of LED's radiation. Due to the effective energy transfer between TbAG host and activator, Mn2+ ions in TbAG possess the bright orange luminescence in the bands peaked at 595 nm with a lifetime of 0.64 ms which are caused by the 4T16A1 radiative transitions. The simultaneous process of energy transfer is realized in TbAG:Mn,Ce: (i) from Tb3+ to Mn2+ ions; (ii) from Tb3+ cations to Ce3+ ions and then partly to Mn2+ ions through Tb3+ ion sublattice and Ce-Mn dipole-dipole interaction.  相似文献   

6.
Electron paramagnetic resonance (EPR), luminescence and infrared spectra of Mn2+ ions doped in zinc gallate (ZnGa2O4) powder phosphor have been studied. The EPR spectra have been recorded for zinc gallate phosphor doped with different concentrations of Mn2+ ions. The EPR spectra exhibit characteristic spectrum of Mn2+ ions (S=I=5/2) with a sextet hyperfine pattern, centered at geff=2.00. At higher concentrations of Mn2+ ions, the intensity of the resonance signals decreases. The number of spins participating in the resonance has been measured as a function of temperature and the activation energy (Ea) is calculated. The EPR spectra of ZnGa2O4: Mn2+ have been recorded at various temperatures. From the EPR data, the paramagnetic susceptibility (χ) at various temperatures, the Curie constant (C) and the Curie temperature (θ) have been evaluated. The emission spectrum of ZnGa2O4: Mn2+ (0.08 mol%) exhibits two bands centered at 468 and 502 nm. The band observed at 502 nm is attributed to 4T16A1 transition of Mn2+ ions. The band observed at 468 nm is attributed to the trap-state transitions. The excitation spectrum exhibits two bands centered at 228 and 280 nm. The strong band at 228 nm is attributed to host-lattice absorption and the weak band at 280 nm is attributed to the charge-transfer absorption or d5→d4s transition band. The observed bands in the FT-IR spectrum are assigned to the stretching vibrations of M-O groups at octahedral and tetrahedral sites.  相似文献   

7.
Changyu Shen  Yi Yang  Huajun Feng 《Optik》2010,121(1):29-32
The shift of the emission band to longer wavelength (yellow-orange) of the Ba2MgSi2−xAlxO7: 0.1Eu2+ phosphor under the 350-450 nm excitation range has been achieved by adding the codoping element (Mn2+) in the host. The single-host silicate phosphor for WLED, Ba2MgSi2−xAlxO7: 0.1Eu2+, 0.1Mn2+ was prepared by high-temperature solid-state reaction. It was found experimentally that, its three-color emission peaks are situated at 623, 501 and 438 nm, respectively, under excitation of 350-450 nm irradiation. The emission peaks at 438 and 501 nm originate from the transition 5d to 4f of Eu2+ ions that occupy the two Ba2+ sites in the crystal of Ba2MgSi2−x AlxO7, while the 623 nm emission is attributed to the energy transfer from Eu2+ ions to Mn2+ ions. The white light can be obtained by mixing the three emission colors of blue (438 nm), green (501 nm) and red (623 nm) in the single host. When the concentrations of the Al3+, Eu2+ and Mn2+ ions were 0.4, 0.1 and 0.1 mol, respectively, the sample presented intense white emission. The addition of Al ion to the host leads to a substantial change of intensity ratio between blue and green emissions. White light could be obtained by combining this phosphor with 405 nm light-emitting diodes. The near-ultraviolet GaN-based Ba2MgSi1.7 Al0.3O7: 0.1Eu2+, 0.1Mn2+ LED achieves good color rendering of over 85.  相似文献   

8.
用固相反应法合成了Sr4Al14O25:M和Sr4Al14O25:(M+Sm3+)(M=Mn4+, Cr3+)荧光粉, 研究了其发光性能.Sm的共掺并没有改变Sr4Al14O25:Cr3+激发带和发射带的位置, 但是显著提高了材料的发光性能;Sm共掺Sr4Al14O25:Mn4+反而降低了发光强度. 对于Cr3+, Sm3+共掺的Sr4Al14O25荧光粉, 呈现了从Sm3+到Cr3+ 的辐射形式的能量传递过程,说明了Sm的共掺对于Sr4Al14O25:Cr3+荧光粉的发光强度提高的原因.  相似文献   

9.
A novel long-lasting phosphorescence phosphor, Mn2+-activated Mg2SnO4, has been synthesized and its optical properties have been investigated. The Mg2SnO4:Mn2+ emits green light with high luminance, upon UV irradiation, centered at 499 nm from the spin forbidden transitions of the d-electrons in Mn2+ ions. The CIE chromaticity coordinates of the Mg2SnO4:Mn2+ phosphor are x=0.0875 and y=0.6083 under 254 nm UV excitation. The phosphorescence can be observed by the naked eyes (0.32 mcd/m2) in the dark clearly for over 5 h after the 5 min UV irradiation. Thermoluminescence has been studied and the mechanism of the long-lasting phosphorescence has been discussed.  相似文献   

10.
Electron spin resonance spectra of Mn2+ in diluted solid solutions of MnO2 in Y2O3 have been studied at room temperature for Mn concentrations between 0.20 and 2.00 mol%. Isolated Mn2+ ions in sites with two different symmetries were observed, as well as Mn2+ ions coupled by the exchange interaction. The relative concentration of isolated to coupled Mn2+ ions decreases with increasing manganese concentration. The results are consistent with the assumption that the manganese ions occupy preferentially the C2 symmetry sites. A theoretical calculation based on this model yields an effective range of the exchange interaction between Mn2+ ions of 0.53 nm, of the same order as that of Mn2+ ions in CaO.  相似文献   

11.
Long-lasting phosphorescence (LLP) was observed in Pr3+-doped Y3Al5O12 (YAG:Pr) after it was excited by 240 or 290 nm light. The photoluminescence (PL) and LLP properties were studied. It is interesting that the PL and LLP spectra were different. In the PL emission spectra both the emissions of d-f and f-f transitions of Pr3+ ions were observed. However, in the LLP spectra of YAG:Pr the emissions of d-f transition were absent. It is deduced that the differences were due to the energy transfer process between traps and emission centers. On the other hand, significant differences were observed between the two LLP spectra after the sample was excited by 240 and 290 nm lights, respectively. The thermoluminescence (TL) properties were also studied. It is suggested that these studies will be significant for understanding the mechanism of LLP phenomenon.  相似文献   

12.
A series of phosphors with the composition Y3MnxAl5−2xSixO12 (x=0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6) was prepared through solid state reactions. X-ray powder diffraction analysis of samples shows that when co-doping content does not exceed 16% of Al3+, equimolar co-doping of Mn2+ and Si4+ does not change the garnet structure of phosphors, but makes the interplanar distance to decrease a certain extent. However, if the co-doping content exceeds 16%, new phases will form in the samples. The excitation and emission spectra of samples show that Mn2+ in Y3MnxAl5−2xSixO12 emits broadband orange light (peak wavelength varies from 586 to 593 nm). With an increment in co-doping content, the emission intensity of the phosphors increases when the value of x is lower than 0.1 while it decreases when it is higher than 0.1 and the emission peak moves to a longer wavelength.  相似文献   

13.
Measurements are reported on the fluorescence and excitation spectra of Fe3+-doped LiGa5O8 in the ordered phase. Spectral determinations were made with powder samples containing 0.01 to 1% atomic weight of Fe3+, within the temperature range 300 K to 25 K. A comparison is presented between the optical properties of trivalent iron in lithium gallate and in lithium aluminate, LiAl5O8, both in their ordered phases. The best fit with crystal field parameters B, C, and Dq, yields the following values for these parameters: Dq = 906 cm-1, B = 594 cm-1, and C = 3 737 cm-1. As is the case with LiAl5O8:Fe3+, the Stokes shift in LiGa5O8:Fe3+ is very large, 3 624 cm-1, although somewhat smaller than the 4 300 cm-1 seen in LiAl5O8:Fe3+.  相似文献   

14.
This paper reports on the luminescence and electron paramagnetic resonance (EPR) investigations on MgSrAl10O17:Mn2+ green-emitting phosphor. Single-phase MgSrAl10O17 was successfully synthesized by the one-step solution combustion route without the need for post-annealing at a higher temperature. Crystallization of the powder was confirmed by X-ray diffraction. The luminescence of Mn2+- activated MgSrAl10O17 shows a strong green-emission peak around 515 nm due to the 4T16A1 transition of Mn2+ ions under the excitation (453 nm). The EPR spectra of Mn2+ ions exhibit a sextet hyperfine structure centered at g ≈1.995. The Mn2+ ion occupies Mg sites which are in tetrahedral symmetry. The magnitude of the hyperfine splitting (A) indicates that Mn2+ is in a moderately ionic environment. The number of spins participating in resonance (N), the paramagnetic susceptibility (χ) and the zero-field splitting parameter (D) have been evaluated and discussed.  相似文献   

15.
A phosphate compound, BaMgP2O7 was co-doped with Eu2+ and Mn2+ for making a red-emitting phosphor. The phosphor was prepared by a solid-state reaction at high temperature. The photoluminescence properties were investigated under ultraviolet (UV) ray excitation. From a powder X-ray diffraction (XRD) analysis, the formation of single-phased BaMgP2O7 with a monoclinic structure was confirmed. In the photoluminescence spectra, the BaMgP2O7:Eu,Mn phosphor emits two distinctive colors: a blue band centered at 409 nm originating from Eu2+ and a red band at 615 nm caused by Mn2+. Also, efficient energy transfer from Eu2+ to Mn2+ in the BaMgP2O7:Eu,Mn system was verified by observing that the excitation spectra of BaMgP2O7:Eu,Mn emitted at 409 and 615 nm by Eu2+ emission and Mn2+ emission, respectively, are almost the same as that of BaMgP2O7:Eu monitored at 409 nm. The optimum concentration of Eu2+ ions in BaMgP2O7:0.015Eu excited at 309 nm wavelength is 1.5 mol%. With an increase of Mn2+ content up to 17.5 mol%, a systematic decline in the intensity of the excitation spectrum by Eu2+ and a gradual growth in the intensity of emission band by Mn2+ were observed. Accordingly, the optimum concentration of Mn2+ in BaMgP2O7:0.015Eu,Mn is 17.5 mol%. The maximum spectral overlap between emission of Eu2+ and excitation of Mn2+ is achieved in a composition of BaMgP2O7:0.015Eu,0.175Mn, resulting in considerable red-emission at 615 nm.  相似文献   

16.
The LaAl11O18:Mn2+ powder phosphor has been prepared using a self-propagating synthesis. Formation and homogeneity of the LaAl11O18:Mn2+ phosphor has been verified by X-ray diffraction and energy dispersive X-ray analysis respectively. The EPR spectra of Mn2+ ions exhibit resonance signals with effective g values at g≈4.8 and g≈1.978. The signal at g≈1.978 exhibits six-line hyperfine structure and is due to Mn2+ ions in an environment close to tetrahedral symmetry, whereas the resonance at g≈4.8 is attributed to the rhombic surroundings of the Mn2+ ions. It is observed that the number of spins participating in resonance for g≈1.978 increases with decreasing temperature obeying the Boltzmann law. Upon 451 nm excitation, the photoluminescence spectrum exhibits a green emission peak at 514 nm due to 4T1 (G)→6A1 (S) transition of Mn2+ ions. The crystal field parameter Dq and Racah inter-electronic repulsion parameters B and C have been evaluated from the excitation spectrum.  相似文献   

17.
The structural phase transition in annealed CaMn7O12 has been investigated by using high resolution synchrotron radiation powder diffraction. There is a phase coexistence phenomenon: two different crystallographic phases coexist in the material between 410 and 458 K. The first one is trigonal and it has a charge ordering (CO) of the Mn3+ and Mn4+ ions, while the second one is cubic and charge delocalized (CD). The volume fraction of the CD phase increases with temperature from 22% at 418 K up to 100% at 468 K. Both phases have domains of at least 150 nm at each temperature. The annealing of CaMn7O12 relaxed a part of the strains in the lattice, but did not influence the phase coexistence phenomenon.  相似文献   

18.
黄平  崔彩娥  王森 《中国物理 B》2009,18(10):4524-4531
A type of red luminescent Sr3Al2O6:Eu2+, Dy3+ phosphor powder is synthesised by sol-gel-combustion processing, with metal nitrates used as the source of metal ions and citric acid as a chelating agent of metal ions. By tracing the formation process of the sol-gel, it is found that it is necessary to reduce the amount of NO3- by dropping ethanol into the solution for forming a stable and homogeneous sol-gel. Thermogravimetric and Differential Scanning Calorimeter Analysis, x-ray diffractionmeter, scanning electron microscopy and photoluminescence spectroscopy are used to investigate the luminescent properties of the as-synthesised Sr3Al2O6:Eu2+, Dy3+. The results reveal that the Sr3Al2O6 crystallises completely when the combustion ash is sintered at 1250 C. The excitation and the emission spectra indicate that the excitation broadband lies mainly in a visible range and the phosphors emit a strong light at 618 nm under the excitation of 472 nm. The afterglow of (Sr0.94Eu0.03Dy0.03)3Al2O6 phosphors sintered at 1250 ℃ lasts for over 1000 s when the excited source is cut off.  相似文献   

19.
Results of temperature dependence of EPR spectra of Mn2+ and Cu2+ ions doped calcium cadmium acetate hexahydrate (CaCd(CH3COO)4·6H2O) have been reported. The investigation has been carried out in the temperature range between room temperature (~ 300 K) and liquid nitrogen temperature. A I-order phase transition at 146 ± 0.5 K has been confirmed. In addition a new II-order phase transition at 128 ± 1 K has been detected for the first time. There is evidence of large amplitude hindered rotations of CH3 groups which become frozen at ~ 128 K. The incorporation of Cu2+ and Mn2+ probes at Ca2+ and Cd2+ sites respectively provide evidence that the phase transitions are caused by the molecular rearrangements of the common coordinating acetate groups between Ca2+ and Cd2+ sites. In contradiction to the previous reports of a change of symmetry from tetragonal to orthorhombic below 140 K, the symmetry of the host is concluded to remain tetragonal in all the three observed phases between room temperature and liquid nitrogen temperature.  相似文献   

20.
崔彩娥  王森  黄平 《物理学报》2009,58(5):3565-3571
采用溶胶凝胶法制备了Sr3Al26:Eu2+,Dy3+红色长余辉发光材料,利用X射线衍射仪对材料的物相进行了分析,结果表明,1200℃下制备的样品的物相为Sr3Al26,少量的Eu和Dy掺杂没有影响样品的相组成.采用荧光分光光度计、照度计测定了样品的发光特性.结果表明Sr3Al2关键词: 红色长余辉 3Al26')" href="#">Sr3Al26 溶胶凝胶法  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号