首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the vibrational spectra and force constants of CH3CN and CD3CN have been thoroughly studied, partially deuterated methyl cyanide has received much less attention. The infrared spectrum of CD2HCN has only recently been reported1 and that of CH2DCN has not yet appeared. Normal coordinate analysis for neither partially deuterated species has appeared. We report here harmonic frequencies and potential energy distributions for both partially deuterated methyl cyanide species, CH2DCN and CD2HCN, based on force fields and structural parameters from CH3CN and CD3CN. The calculated frequencies for CD2HCN are compared with the observed infrared frequencies. The vibrational interaction of the relatively high CN stretching frequency and the CD stretching frequencies is also discussed.  相似文献   

2.
The harmonic force fields of methylene chloride and dichlorosilane have been obtained by combining the vibrational wavenumbers and centrifugal distortion constants of several isotopic species. Although enough data were available from earlier work for dichlorosilane, it was first necessary for methylene chloride to determine its distortion constants from microwave spectra. Transitions were measured up to J = 80 and J = 90 for CH2Cl2 and CD2Cl2, respectively, and the analysis gave accurate rotational constants, and quartic and sextic distortion constants. Ground-state effective, substitution, ground-state average and approximate equilibrium structures have been obtained for both molecules.  相似文献   

3.
An ab initio quartic anharmonic force field for methanol has been calculated at the equilibrium position using the CCSD(T) method for the structure and the harmonic potential energy surface, and the MP4(SDQ) method for the anharmonic part of the surface. A triple zeta basis set was employed with symmetrized curvilinear internal valence coordinates in all calculations. The internal coordinate force field constants have been transformed into force constants in the dimensionless normal coordinate representation for various isotopomers. Vibrational term values for CH3OH, CH3OD, CD3OH, and CD3OD have been obtained using second order perturbation theory. Particular care has been devoted to the inclusion of Fermi resonance interactions between different vibrational states. A good accuracy has been achieved in the calculation of the fundamentals for all the isotopomers, the mean absolute error being 5.8 cm?1.  相似文献   

4.
Abstract

The i,r. spectrum of CH2BrCl between 4000 and 200 cm?1 has been investigated in the liquid phase. All the absorptions, except few features, have been identified and more than 50 bands including fundamentals, overtone and combination bands have been assigned. Anharmonicity constants from the characterized vibrational levels have been also determined. Data from liquid phase spectra are needed to correctly interpret the rather complex vapor phase features whose investigation is in progress now.  相似文献   

5.
Abstract

In order to aid assignment of Co-C bond stretching vibrational frequency of CH3Co(DH)2H2O (DH=dimethylgIyoximato monanion) in IR and Raman spectra, its isotopic substitution CD3Co(DH)2H2O has been synthesized and normal coordinate analyses on the two complex have been made. The bands were assigned in terms of potential energy distribution. The results provide definitive band assignment of the Co-C bond and Co-N bond stretching modes which are coupling at 511 cm?1.  相似文献   

6.
The anharmonic force field of difluoromethanimine, F2C NH, has been reinvestigated theoretically using a coupled-cluster singles and doubles approach, augmented for structural optimization and harmonic force field by a contribution of connected triple excitations, CCSD(T). The cubic and quartic force constants have been obtained by numerical derivatives computed from analytical quadratic force constants calculated by second-order Møller-Plesset perturbation theory, MP2. The quadratic force constants and the equilibrium structure of F2C NH have then been scaled by a global least-squares fitting procedure to the spectroscopic data and parameters experimentally determined for this molecule. This force field, obtained in the internal coordinates space and therefore valid for all isotopomers of difluoromethanimine, yields a complete set of spectroscopic molecular constants providing a critical assessment of the experimental rotational and centrifugal distortion constants, fundamentals, overtones, and combination bands determined so far for F2C NH. In addition, the final force field can be used to make predictions of all important vibrational and rotational parameters which should be accurate and useful for new spectroscopic investigations.  相似文献   

7.
The infrared gas phase spectra of 12CH2Cl2, 13CH2Cl2, and 12CD2Cl2 have been studied in the region below 6200 cm−1 under conditions of high resolution. Some 30 vibrational levels can be identified for each isotopic species and assigned unequivocally in terms of the band contours displayed. Direct observation has been made of the very weak ν2 fundamentals in all species, and of the “inactive” torsion fundamental of CD2Cl2. Rotational analyses have been performed on the observed Q-branch features of over 30 bands. For each isotopic species, it is found, with one exception, that all vibration levels fit accurately the simple second-order perturbation expression involving ν′s and x′s. The sole exception in each species is the overtone region of the CH2(CD2) stretching vibrations. Here anharmonicity effects bring vibrationally interacting levels into close enough proximity for resonance effects to become just slightly more than of second-order importance. Full analyses including Fermi resonance are made. The effects of the Darling-Dennison resonance between the overtones of the CH stretching fundamentals are observed and corrected for in terms of a simple assumption. Most of the resulting anharmonicity constants bear isotopic relationships similar to those established for H2O and D2O. It is concluded that, with the exception of the CH(CD) stretching overtone region, methylene chloride isotopomers behave as vibrationally unperturbed molecular systems in the mid-infrared region.  相似文献   

8.
The infrared and Raman spectra of CH3CH2CN, CH3CD2CN, and CD3CH2CN, and the infrared spectrum of CH3CH213CN were investigated in detail between 6000 and 100 cm−1. Some infrared measurements of other isotopic species are also reported and partial assignments given. All fundamentals of propionitrile-d0, -d2, -d3, and -13CN were assigned, together with a large number of mainly binary combination bands for which a general method of assignment is given. Several Fermi resonances were detected and the unperturbed positions of some of the levels involved were calculated. Special attention was paid to the CH stretching vibrations for which persisting wrong assignments exist in the literature, and to the methyl torsion frequencies which were determined for the four isotopic species above. A valence force field was calculated, and the potential energy distribution of the normal vibrations is tabulated.  相似文献   

9.
《Molecular physics》2012,110(19-20):2419-2427
Accurate spectroscopic and geometric constants for CH3O2, and its isotopologues 13CH3OO, CH3 18O18O and CD3OO, are predicted. Employing coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)], we obtain optimized equilibrium geometries using Dunning's cc-pVTZ basis set. A Taylor expansion of the potential energy surface, including all third-order and semidiagonal fourth-order terms in a basis of normal coordinates, yields anharmonic vibrational frequencies and vibrationally-averaged properties including the effects of anharmonicity. We detail the strong influence of Fermi resonances on the problematic ν6 vibrational mode of CD3OO, arriving at a value of 993?cm?1; two previous experimental measurements of this mode appear to have been incorrectly assigned. Our computed energies for the low intensity ν11 transition are in excellent agreement with experimental measurements performed for CH3 18O18O and CD3OO, inspiring confidence that our results will serve as a guide for experimental measurement of this yet-unobserved quantity for the CH3OO and 13CH3OO isotopologues. Given the reliability of our force field, and considering the results of other experiments, we make a number of reassignments to previously recorded spectra, which eliminate large disagreements between experimental observations. The vibrational averaging of the rotational constants and geometries are also discussed for each isotopologue.  相似文献   

10.
The rotational spectra of 12CD2F2 in the ν2, ν3, ν4, 2ν4, ν5, ν7, ν8, and ν9 states were observed and assigned. Weak Coriolis interactions between ν3 and ν7, ν3 and ν9, and ν5 and ν7 were analyzed using approximate expressions for the rotational energy levels. The resonance between the ν2 and the ν8 state was found much stronger, and an effective two-dimensional Hamiltonian with the Coriolis term in the off-diagonal block was set up to analyze the spectra. The effect of the Fermi resonance between ν3 and 2ν4 was found to be very small.The ground-state spectrum of 13CD2F2 was observed and the rotational constants and the centrifugal distortion constants were determined. The data on 12CD2F2 and 12CDHF2 were also improved very much in accuracy.The Coriolis coupling constants and the differences between two vibrational levels in resonance, which were determined by the analysis of the satellite spectra, are in good agreement with those obtained from vibrational spectra, except for the ν2 band center, which is revised to 1170.3 cm?1. The force constants were also checked using the centrifugal distortion constants of 12CD2F2, 13CD2F2, and 12CHDF2.  相似文献   

11.
Starting from force constant values calculated by an ab initio MO method (4-31G(N1)), and by adjusting the diagonal elements, a practical force constant matrix (F) has been reached which could explain the observed infrared and Raman spectra (in the frequency range lower than 2000 cm?1) of the gauche form of the ethylamine CH3CH2NH2 molecule and five isotopic species CH313CH2NH2, CH3CH215NH2, CH3CD2NH2, CH3CH2ND2, and CD3CD2NH2. The F matrix for the trans form of ethylamine was constructed by transferring ab initio 4-31G(N1) values and by revising diagonal elements with conversion factors whose values are equal to the corresponding values of gauche form. A nearly complete set of assignments was achieved of the vibrational bands of ethylamines, observed so far in the spectral range 2000–100 cm?1. In matrix isolation spectroscopy, two bands assignable to the NH2 wagging vibrations of gauche and trans forms have been found at 775 and 782 cm?1, respectively, for CH3CH2NH2. They are at 768 and 774 cm?1, respectively, for CD3CD2NH2. From the intensity changes of these bands observed on changing the nozzle temperature in the matrix formation, the energy difference ΔE (gauche-trans) of these two conformers has been estimated to be 100 ± 10 cm?1.  相似文献   

12.
Upon codeposition at 14 K of an Ar:CO sample with an Ar:NF3 sample that had been passed through a low-power microwave discharge in an Al2O3 tube, very prominent infrared absorptions of FCO and F2CO were observed. Overtone bands of FCO were identified at 2032 and 3690 cm−1, and their assignment was confirmed by both carbon-13 and oxygen-18 isotopic substitution. Further data were also obtained on the vibrational fundamentals of isotopically substituted F2CO. A six-constant valence force potential has been derived for FCO using a least-squares force constant adjustment to the isotopic data and assuming a recently calculated structure. The photodissociation of FCO into F + CO was observed with a threshold near 2800 Å. The assignment of two overlapping electronic transitions of FCO between 3400 and 2300 Å is discussed.  相似文献   

13.
14.
The infrared (from 4000 to 100 cm?1) and Raman spectra of CH2I2 and CD2I2 have been recorded in the liquid and gaseous phases. Assignments have been made for all observed bands and, in the case of CH2I2, compared with those previously reported. Some bands appearing in the CD2I2 spectrum have been attributed to the presence of CHDI2. The wavenumbers of the fundamental bands of CHDI2 have been calculated from those of CH2I2 and CD2I2 using Brodersen and Langseth's rule, and compared with those observed in the CD2I2 spectrum.  相似文献   

15.
The rotational spectra of 12CH2F2 in seven of the nine fundamental vibrational states and also in overtone and combination states involving the ν4 mode were observed and assigned. Coriolis interactions between ν3 and ν7, ν2 and ν8, ν3 and ν9, and ν5 and ν7 were analyzed by using approximate expressions for the rotational levels. An effective Hamiltonian with the Coriolis term in the off-diagonal block was applied to stronger interaction between ν3 and ν9. Fermi resonance between ν3 and 2ν4 was found to be negligible. The ground state spectra of 12CH2F2 and of 13CH2F2 were remeasured to improve the accuracy of the rotational and centrifugal distortion constants. The Coriolis coupling constants and the energy differences between two vibrational levels in resonance, which were obtained through an analysis of the satellite spectra, are compared with the results derived from a normal coordinate analysis.  相似文献   

16.
The redundancy-free internal valence force field (RFIVFF) of acetonitrile is reported using CNDO/force method. The initial force field is set up by taking the interaction and bending force constants from CNDO force field and transferring stretching force constants from the force fields of chemically related molecules. The final force field is obtained by refining the initial force field using vibrational harmonic frequencies of CH3CN,13CH3CN, CH3 13CN, CH3C15N, CD3CN and CD3 13CN. The final force field thus obtained is found to be excellent on the basis of frequency fit and potential energy distribution.  相似文献   

17.
The ground state millimeter-wave spectra of CH3NCH2 and CD3NCD2 have been measured. The rotational constants, centrifugal distortion constants, and barrier hindering internal rotation of the methyl group have been determined for both species. For the parent species Iα and ?(i,a) were also obtained, and for the perdeuteriated species the quadrupole coupling constants of 14N were determined.  相似文献   

18.
The infrared spectra of ammonia-borane, BH3NH3, and two of its deuterated isotropic species, BD3ND3 and BH3ND3, isolated in argon matrix at liquid hydrogen temperature have been measured. Well resolved bands for these three isotopic species have been observed for all the fundamentals. A complete frequency assignment based on C3v molecular symmetry has been made. A set of force constants have been calculated from the data for the two isotopes BH3NH3 and BD3ND3 using a valence force field. The agreement between experiment and frequencies calculated from these force constants for the mixed isotopic species, BH3ND3, substantiates the present assignment.  相似文献   

19.
This work gives an extensive critique of studies on methyl bromide and all its isotopic varieties with special stress on their rotational, vibrational, and rovibrational spectra. The rotational constants of more than 40 vibrational states of CH3Br and 20 of CD3Br, as well as of the ground states of all varieties, were critically examined and corrected where needed. An almost complete set of harmonic and anharmonic constants for CH3Br was derived. From the set of rotation-vibration interaction constants, new accurate equilibrium constants Ae and Be have been evaluated for CH379Br, CH381Br, CD379Br, CD381Br, from which the following equilibrium structure is obtained: re(C---H) = 1.0823 Å; re(C---Br) = 1.9340 Å; α(HCH) = 111.157°.  相似文献   

20.
Abstract

The high resolution (0.0010cm?1) Fourier transform infrared spectra of the partially deuterated methyl iodide molecules CH2DI and CHD21 have been recorded and analysed in the ν3 band regions around 510cm?1. The fundamental band ν3 is associated with the stretching of the C-I bond and the spectra appear therefore as an asymmetric rotor hybrid a/b-type band and hybrid a/c-type band for CH2DI and CHD2I, respectively. About 4700 transitions in the case of CH2DI and about 3900 transitions in the case of CHD2I have been assigned. The ground state rotational constants of CH2DI and CHD2I have been obtained using the ground state combination differences calculated from the assigned ν3 transitions and 16 microwave transitions from literature. The S reduced Watson's Hamiltonian has been used in the calculations. In addition, the upper state parameters describing the v3=1 vibrational states of these molecules have been determined. The obtained ground state constants as well as the upper state parameters have been compared to the corresponding constants of the symmetric top species CH3I and CD3I  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号