首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘训良  楼国锋  温治 《计算物理》2012,29(6):815-822
建立直流道质子交换膜燃料电池(PEMFC)三维非等温两相流数学模型,基于质子交换膜与气体之间的水分传递特征,综合考虑电渗、浓度扩散及电化学反应作用的影响,发展了膜电极水分传递的非平衡扩散模型.并自主开发程序代码对电池内复杂的多物理场耦合传递过程进行数值模拟,研究PEMFC电极内气态水、液态水分布、质子膜含水量分布和水迁移特性等,分析单电池内部的温度分布特征,并获得电池极化性能曲线.  相似文献   

2.
A time-domain Chebyshev collocation (ChC) method is used to simulate acoustic wave propagation and its interaction with flexible structures in ducts. The numerical formulation is described using a two-dimensional duct noise control system, which consists of an expansion chamber and a tensioned membrane covering the side-branch cavity. Full coupling between the acoustic wave and the structural vibration of the tensioned membrane is considered in the modelling. A systematic method of solution is developed for the discretized differential equations over multiple physical domains. The time-domain ChC model is tested against analytical solutions under two conditions: one with an initial state of wave motion; the other with a time-dependent acoustic source. Comparisons with the finite-difference time-domain (FDTD) method are also made. Results show that the time-domain ChC method is highly accurate and computationally efficient for the time-dependent solution of duct acoustic problems. For illustrative purposes, the time-domain ChC method is applied to investigate the acoustic performance of three typical duct noise control devices: the expansion chamber, the quarter wavelength resonator and the drum silencer. The time-dependent simulation of the sound-structure interaction in the drum silencer reveals the delicate role of the membrane mass and tension in its sound reflection capability.  相似文献   

3.
A new numerical method to model the dynamic behavior of lipid vesicles under general flows is presented. A gradient-augmented level set method is used to model the membrane motion. To enforce the volume- and surface-incompressibility constraints a four-step projection method is developed to integrate the full Navier–Stokes equations. This scheme is implemented on an adaptive non-graded Cartesian grid. Convergence results are presented, along with sample two-dimensional results of vesicles under various flow conditions.  相似文献   

4.
In this paper, a vibration testing and health monitoring system based on an impulse response excited by laser is proposed to detect damage in membrane structures. A high power Nd: YAG pulse laser is used to supply an ideal impulse to a membrane structure by generating shock waves via laser-induced breakdown in air. A health monitoring apparatus is developed with this vibration testing system and a damage detecting algorithm which only requires the vibration mode shape of the damaged membrane. Artificial damage is induced in membrane structure by cutting and tearing the membrane. The vibration mode shapes of the membrane structure extracted from vibration testing by using the laser-induced breakdown and laser Doppler vibrometer are then analyzed by 2-D continuous wavelet transformation. The location of damage is determined by the dominant peak of the wavelet coefficient which can be seen clearly by applying a boundary treatment and the concept of an iso-surface to the 2-D wavelet coefficient. The applicability of the present approach is verified by finite element analysis and experimental results, demonstrating the ability of the method to detect and identify the positions of damage induced on the membrane structure.  相似文献   

5.
Membranes are complex biological systems that display heterogeneity at all spatial scales. At a molecular level, the heterogeneity arises from lipid and protein composition. At the cellular level, heterogeneity is due to membrane organization and large scale morphology. A quantitative evaluation of membrane heterogeneity at a microscopic level is very important for several fields of membrane studies. We have developed a method for the analysis of the decay of fluorescent membrane probes that can provide a quantity sensitive to membrane heterogeneity. This method is based on the analysis of the fluorescence decay using continuous lifetime distributions. The major challenge in the interpretation of the analysis results is in the identification, at a molecular level, of the mechanisms that influence the fluorescence decay. In this review we illustrate the principles of data analysis and we show examples of identification of the measured parameters with specific variables that affect membrane heterogeneity.  相似文献   

6.
This paper presents a method to predict the reverberation absorption coefficient of a finite-size membrane absorbers composed of a single- or double-leaf membrane structure of various configurations. In order to predict the sound absorptivity of such an absorber, it is needed to consider that sound is incident from both sides of the absorber, which has not been accounted for the previous studies on membrane absorbers. The edge effect also needs to be considered if the absorber is rather small. The present method is established based on the theory for absorbers hanged in a reverberation chamber developed by Fujiwara and Makita [J Acoust Soc Jpn (E) 1980;1:37-45]. The same theory requires the fraction of energy dissipation in the absorber, which can be obtained by the difference of absorption and transmission coefficients, and the difference is calculated by the theories for various membrane structures presented in the authors’ previous work. An experimental study was also conducted to validate the present method: the predicted values showed good agreement with the measured ones. The numerical examples calculated by the present method are also presented to discuss the effect of the various control parameters, and it is suggested how to improve the sound absorption performance of double-leaf membrane absorbers with a permeable and an impermeable leaves.  相似文献   

7.
A novel immunosensor using eggshell membrane for determining the human immunoglobulin M (HIgM) in serum was developed. The immunosensor was fabricated by immobilizing goat anti-human IgM antibody on the eggshell membrane with glutaraldehyde. Based on the immunoreactions of goat anti-human IgM (primary antibody), HIgM (target antigen) and the goat anti-human IgM (secondary antibody), the sandwich complex were formed on the eggshell membrane and fluorescein isothiocyanate (FITC) labeling secondary antibody could be employed to detect the target antigen. Under the optimized conditions, the linear range for determining HIgM is 5-60 ng mL(-1) and the detection limit is 4.3 ng mL(-1), which are comparable with the results obtained by general immunonephelometric method. Meanwhile, this proposed sensor also exhibited remarkable storage stability, permeability and highly biocompatibility. The effects of temperature and pH value on eggshell membrane were investigated. Therefore, the proposed immunosensor, by using eggshell membrane as immobilization platform of antibody, offers an excellent fluorescence response to HIgM. The immunosesor provided a new alternative to determine antigens and other bioactive molecules.  相似文献   

8.
A method has been developed allowing structural and binding parameters to be recovered by global analysis of two-dimensional array of steady-state RET data in the special case where energy acceptors distribute between aqueous and lipid phases while donors are embedded in the membrane at a known depth. To test the validity of this approach, correlation and error analyses have been performed using simulated data. To exemplify the method application to the membrane studies, energy transfer from anthrylvinyl-labeled phosphatidylcholine incorporated into mixed phosphatidylcholine/cardiolipin unilamellar vesicles to heme group of cytochrome c is analyzed.  相似文献   

9.
A transition model, which is capable of obtaining both membrane and bending residual stress components from initial experimental information, is developed for thin-walled plane structures. The determination of residual stresses is based on the combined implementing of the hole-drilling method and reflection hologram interferometry. Required input data are obtained by simultaneous measurements on through hole distortions in two principal strain directions on opposite sides of thin plane specimen. These sides are faces of the drill entrance and exit. Superimposed residual stresses field, which consists of both membrane and bending components, is a reason for the various deviations of each specific fringe pattern from an ideal form. This fact is a clear experimental indication of the bending stress contribution in a total stress field. Two ways of decomposition of superimposed residual stresses field are proposed and analysed in detail. Emphasis is laid on a careful quantitative formulation of the inverse problem needed for an accurate deriving both membrane and bending residual stress components. It is shown that an availability of two-side initial data is both an essential and necessary condition of such a formulation. Detailed analysis of an accuracy of the results obtained is performed. This analysis is based on a wide set of both actual interferograms and analogous reference fringe patterns related to superimposed residual stress field under study. Comparing residual stress values obtained proceeding from one-side and two-side data are presented for different types of superimposed field of interest.  相似文献   

10.
A mechanism of generating an extraction field in an ion source in which a polymer track membrane with nanodimensional channels is used as an environment-vacuum interface is considered. A high electric field necessary for the effective extraction of ions from a liquid on the membrane surface into the gas phase is maintained by charging the vacuum surface of the membrane. Charging is provided by oppositely charged secondary ions resulting from the disintegration of primary cluster ions on the extraction electrode. A decrease in the source current observed when the vacuum surface discharges counts in favor of this mechanism. The extracted ion energy distribution in the neighborhood of the extraction zone is obtained by the retarding potential method. Various aspects of ion beam formation in the membrane ion source are discussed.  相似文献   

11.
The measurement of adhesion involves not only surface properties, but also the mechanical properties of the substrates in contact, in particular energy dissipation near the fracture front. A method to help elucidate the contribution of this dissipation may be to study the adhesion of thin films. We consider the situation where a spherical punch adheres to a thin membrane, thus leading to deformation of the latter. Equations for estimating the energy of adhesion are developed. The analysis leads to a criterion for the adhesion to be stable whilst separating (quasi-statically) punch and membrane.  相似文献   

12.
A new method of male contraception has been developed which results in long-term infertility and has the potential advantage of being reversible. The contraceptive, given the name RISUG (an acronym for Reversible Inhibition of Sperm Under Guidance) is a polyelectrolytic compound and when injected into the lumen of the vas deferens, induces a surface charge imbalance on the sperm membrane system leading to its destabilization. In the present study, morphological and topological alterations in human spermatozoa induced by RISUG have been investigated using atomic force microscopy (AFM). Complete disintegration of the plasma membrane with subsequent rupture and dispersion of the acrosomal contents is observed on treatment with RISUG in vitro. Considerable damage to the midpiece region with significant clustering of the mitochondria and its fusion with the head region is also observed. These observations are in agreement with the significant increase in the volume of RISUG-treated sperm-head region. Topological alterations in the flagellar and midpiece region of RISUG-treated spermatozoa have also been studied.  相似文献   

13.
A phase field method is developed to investigate the morphological evolution of a vesicle in an electric field, taking into account coupled mechanical and electric effects such as bending, osmotic pressure, surface tension, flexoelectricity, and dielectricity of the membrane. The energy of the system is formulated in terms of a continuous phase field variable and the electric potential. The governing equations of the phase field and the electric field are solved using the Galerkin weighted residual approach. The validation and robustness of the algorithm are verified by direct comparisons of the obtained numerical solutions with relevant experimental results. The morphological evolution of an axisymmetric vesicle under an electric field is studied in detail. The results demonstrate that the present method can simulate complex morphological evolutions of vesicles under coupled mechanical–electrical fields.  相似文献   

14.
A simple design of a magnetic separator based on a membrane made of a laser-perforated ferromagnetic foil has been proposed. The separator is primarily intended for analytical and research purposes. The developed magnetic separator of the proposed design has been tested in the separation of a composite aqueous suspension of magnetite nanoparticles adsorbed on hydroxyapatite microparticles. Separation efficiency has been determined via measuring the magnetic moment by the ferromagnetic resonance method; the suspension particle size has been found by dynamic light scattering before and after the separation process. It has been shown that all the particles with a diameter of more than 500 nm are retained during separation; the magnetization of the fraction decreases twofold after passing through the membrane.  相似文献   

15.
A perturbation technique is used to reduce the eighth-order vibration problem for prestressed, clamped cylindrical shells to an equivalent sixth-order membrane problem. In the transformation to a membrane problem composite expansions are utilized, uniformly valid over the length of the shell, to formulate modified boundary conditions that account for the effects of bending near the shell ends. By solving the simpler modified membrane problem numerically, one can demonstrate the effectiveness of the method against eighth-order bending solutions. Indeed, the distinguishing characteristics of the proposed technique is the manner in which perturbation theory and numerical analysis methods complement one another as, for example, in the case of the finite element method, where under certain conditions a modification of the simple membrane element would extend the inherent numerical efficiency of the element to the solution of a class of problems involving both membrane and bending actions.  相似文献   

16.
The near membrane layer is a region where the concentration of the substance transported across the membrane is significantly decreased. Its thickness is defined as a length over which the concentration drops k times with k being an arbitrary large number. The time evolution of such a layer is studied experimentally by means of the laser interferometric method. It is shown that within the experimental errors the thickness of the near membrane layer grows in time for any k as with the coefficient a being independent of the initial concentration and the membrane permeability. Time evolution of the near membrane layers is also analyzed theoretically. The regularities found experimentally are naturally described within the model which has been earlier developed by one of us. In particular, a scales as . Received 12 November 1999 and Received in final form 3 July 2000  相似文献   

17.
Exact and approximate formulas for calculating the sensitivity and bandwidth of an electroacoustic transducer with an enclosed or trapped fluid volume are developed. The transducer is composed of a fluid-filled rectangular duct with a tapered-width plate on one wall emulating the biological basilar membrane in the cochlea. A three-dimensional coupled fluid-structure model is developed to calculate the transducer sensitivity by using a boundary integral method. The model is used as the basis of an optimization methodology seeking to enhance the transducer performance. Simplified formulas are derived from the model to estimate the transducer sensitivity and the fundamental resonant frequency with good accuracy and much less computational cost. By using the simplified formulas, one can easily design the geometry of the transducer to achieve the optimal performance. As an example design, the transducer achieves a sensitivity of around -200 dB (1 VmuPa) at 10 kHz frequency range with piezoelectric sensing. In analogy to the cochlea, a tapered-width plate design is considered and shown to have a more uniform frequency response than a similar plate with no taper.  相似文献   

18.
Arbitrary spatial beam shaping was demonstrated with a membrane electrostatic actuator type deformable mirror (DM). An automatic closed loop system must optimize such beam shapes as flattop. Well-characterized short pulse laser beam is widely required for a photocathode RF gun or for microscopic processing, etc. We propose a new sophisticated optimizing method based on a genetic algorithm (GA) for spatial shaping. A membrane type DM is driven by electrostatic attraction power, and applied electrode voltages vs displacement of membrane surface have a square function relationship. We prepare discrete electrode voltages to linearly change displacement as a utilized gene of the initial population in GA. Using uniform crossover without mutation in this method, we can make an arbitrary spatial beam shape quasi-flattop.  相似文献   

19.
A hybrid analytical-numerical model using Galerkin approximation to variational equations has been developed for predicting global cochlear responses. The formulation provides a flexible framework capable of incorporating morphologically based mechanical models of the cochlear partition and realistic geometry. The framework is applied for a simplified model with an emphasis on application of hybrid methods for three-dimensional modeling. The resulting formulation is modular, where matrices representing fluid and cochlear partition are constructed independently. Computational cost is reduced using two methods, a modal-finite-element method and a boundary element-finite-element method. The first uses a cross-mode expansion of fluid pressure (2.5D model) and the second uses a waveguide Green's-function-based boundary element method (BEM). A novel wave number approach to the boundary element formulation for interior problem results in efficient computation of the finite-element matrix. For the two methods a convergence study is undertaken using a simplified passive structural model of cochlear partition. It is shown that basilar membrane velocity close to best place is influenced by fluid and structural discretization. Cochlear duct pressure fields are also shown demonstrating the 3D nature of pressure near best place.  相似文献   

20.
The problem of the Laplacian transfer across an irregular resistive interface (a membrane or an electrode) is investigated with use of the Brownian self-transport operator. This operator describes the transfer probability between two points of a surface, through Brownian motion in the medium neighbouring the surface. This operator governs the flux across a semi-permeable membrane as diffusing particles repetitively hit the surface until they are finally absorbed. In this paper, we first give a theoretical study of the properties of this operator for a planar membrane. It is found that the net effect of a decrease of the surface permeability is to induce a broadening of the region where a particle, first hitting the surface on one point, is finally absorbed. This result constitutes the first analytical justification of the Land Surveyor Approximation, a formerly developed method used to compute the overall impedance of a semi-permeable membrane. In a second step, we study numerically the properties of the Brownian self-transport operator for selected irregular shapes.Received: 17 June 2003, Published online: 8 December 2003PACS: 41.20.Cv Laplace equation - 82.65.Jv Heterogeneous catalysis - 61.43.Hv Fractals  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号