首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The analytical solution is derived for the plane strain stress field around a cylindrical void in a hexagonal close-packed single crystal with three in-plane slip systems oriented at the angle π/3 with respect to one another. The critical resolved shear stress on each slip system is assumed to be equal. The crystal is loaded by both internal pressure and a far-field equibiaxial compressive stress. The deformation field takes the form of angular sectors, called slip sectors, within which only one slip system is active; the boundaries between different sectors are radial lines. The stress fields are derived by enforcing equilibrium and a rigid, ideally plastic constitutive relationship, in the spirit of anisotropic slip line theory. The results show that each slip sector is divided into smaller regions denoted as stress sectors and the stress state valid within each stress sector is derived. It is shown that stresses are unique and are continuous within stress sectors and across stress sector boundaries, but the gradient of stresses is not continuous across the boundaries between stress sectors. The solution shows self-similarity in that the stresses over the entire domain can be determined from the stresses within a small region adjacent to the void by invoking certain scaling and symmetry properties. In addition, the stress state exhibits periodicity along logarithmic spirals which emanate from the void. The results predict that the mean value of in-plane pressure required to activate plastic deformation around a void in a single crystal can be higher than that necessary for a void in an isotropic material and is sensitive to the orientation of the slip systems relative to the void.  相似文献   

2.
Metals and alloys with hexagonal close packed (HCP) crystal structures can undergo twinning in addition to dislocation slip when loaded mechanically. The complexity of the plastic response and the limited extent of twinning are impediments to their room-temperature formability and thus their widespread adoption. In order to exploit the unusual deformation characteristics of twinning sheet materials in designing novel forming operations, a practical plane stress material model for finite element implementation was sought. Such a model, TWINLAW, has been constructed based on three phenomenological deformation modes for Mg AZ31B: S (slip), T (twinning), and U (untwinning). The modes correspond to three testing regimes: initial in-plane tension (from the annealed state), initial in-plane compression, and in-plane tension following compression, respectively. A von Mises yield surface with initial non-zero back stress was employed to account for plastic yielding asymmetry, with evolution according to a novel isotropic and nonlinear kinematic hardening model. Texture and its evolution were represented throughout deformation using a weighted discrete probability density function of c-axis orientations. The orientation of c-axes evolves with twinning or untwinning using explicit rules incorporated in the model.  相似文献   

3.
Assuming a rigid plastic material model with arbitrary smooth yield criterion, it is shown that the plane strain solutions are singular in the vicinity of maximum friction surfaces. In particular, some components of the strain rate tensor and thus the equivalent strain rate approach infinity. It is also shown that the exact asymptotic representation of the solution near maximum friction surfaces depends on the shape of the yield contour in the Mohr stress plane.  相似文献   

4.
Knowledge of the relationship between the penetration depth and the contact radius is required in order to determine the mechanical properties of a material starting from an instrumented indentation test. The aim of this work is to propose a new penetration depth–contact radius relationship valid for most metals which are deformed plastically by parabolic and spherical indenters. Numerical simulation results of the indentation of an elastic–plastic half-space by a frictionless rigid paraboloïd of revolution show that the contact radius–indentation depth relationship can be represented by a power law, which depends on the reduced Young’s modulus of the contact, on the strain hardening exponent and on the yield stress of the indented material. In order to use the proposed formulation for experimental spherical indentations, adaptation of the model is performed in the case of a rigid spherical indenter. Compared to the previous formulations, the model proposed in the present study for spherical indentation has the advantage of being accurate in the plastic regime for a large range of contact radii and for materials of well-developed yield stress. Lastly, a simple criterion, depending on the material mechanical properties, is proposed in order to know when piling-up appears for the spherical indentation.  相似文献   

5.
Within the context of plane stress assumptions and approximations, an analytical solution is derived for the finite deformation of a traction-free elliptical hole in an infinite plate with tensile tractions at infinity. The plate is composed of a non-work-hardening material satisfying the Tresca yield condition under a deformation theory of plasticity. The governing partial differential equations are parabolic in nature and consequently have a single family of mathematical characteristics or slip lines associated with them. Each particle of mass follows a rectilinear path in the plane defined by its slip line which emanates orthogonally from the elliptical hole. By assuming a constant speed for each particle in the plane, a state of plane equilibrium is realized. The originally elliptical hole expands in the shape of an oval which is a parallel curve to the original ellipse. The slip lines remain orthogonal to the evolving oval hole as a necessary condition for a traction-free interior boundary. This solution also satisfies the material stability criterion that the rate of plastic work be positive throughout the entire body for all time. As this solution has some features associated with large deformation crack problems at elevated temperatures, possible applications include secondary or steady-state creep.  相似文献   

6.
The paper examines singular plastic fields induced near the tip of a wedge indentating a pressure sensitive solid. Plane strain conditions are assumed and material response is modelled by the small strain Drucker–Prager rigid/plastic constitutive law. A standard separation of variables solution is numerically generated for pure power-law hardening. Three possible measures of wall roughness are studied with an attempt to expose the coupling between wall friction and material pressure sensitivity. Sample calculations illustrate that stress singularity decreases with increasing friction, wedge angle and hardening exponent, but increases with pressure sensitivity. At large values of the hardening exponent, when the material is nearly perfectly plastic, effective stress contours approach the slip line limit. The concept of indentation index is introduced as a possible estimate for average indentation pressure.  相似文献   

7.
Based on stress field equations and Hill yield criterion, the crack tip plastic zone is determined for orthotropic materials and isotropic materials under small-scale yielding condition. An analytical solution to calculating the crack tip plastic zone in plane stress states is presented. The shape and size of the plastic zone are analyzed under different loading conditions. The obtained results show that the crack tip plastic zones present “butterfly-like” shapes, and the elastic–plastic boundary is smooth. The size of the plastic zone for orthotropic composites is less at the crack tip for various loading conditions, compared with the case of isotropic materials. Crack inclination angle and loading conditions affect greatly the size and shape of crack tip plastic zone. The mode I crack has a crucial effect on the plastic zone for mixed mode case in plane stress state. The plastic zone for pure mode I crack and pure mode II crack have a symmetrical distribution to the initial crack plane.  相似文献   

8.
The paper examines the in-plane loading of a disc shaped rigid disc inclusion which is embedded in bonded contact with the plane surfaces of a penny-shaped crack. The mixed boundary value problem governing the elastostatic problem is reduced to the solution of a system of coupled integral equations, which are solved numerically to determine results of engineering interest. These results include the in-plane stiffness of the disc inclusion and the crack opening mode stress intensity factor at the boundary of the penny-shaped crack.  相似文献   

9.
The fracture toughness of ductile materials depends upon the ability of the material to resist the growth of microscale voids near a crack tip. Mechanics analyses of the elastic–plastic deformation state around such voids typically assume the surrounding material to be isotropic. However, the voids exist predominantly within a single grain of a polycrystalline material, so it is necessary to account for the anisotropic nature of the surrounding material. In the present work, anisotropic slip line theory is employed to derive the stress and deformation state around a cylindrical void in a single crystal oriented so that plane strain conditions are admitted from three effective in-plane slip systems. The deformation state takes the form of angular sectors around the circumference of the void. Only one of the three effective slip systems is active within each sector. Each slip sector is further subdivided into smaller sectors inside of which it is possible to derive the stress state. Thus the theory predicts a highly heterogeneous stress and deformation state. In addition, it is shown that the in-plane pressure necessary to activate plastic deformation around a cylindrical void in an anisotropic material is significantly higher than that necessary for an isotropic material. Experiments and single crystal plasticity finite element simulations of cylindrical voids in single crystals, both of which exhibit a close correspondence to the analytical theory, are discussed in a companion paper.  相似文献   

10.
IntroductionAyieldingcriterionandtheassociatedflowtheorywereproposedbyHill[1]forinitiallyorthotropicmetalsin 1 948,whichareusedbroadly .AquadraticformofstressesisusedastheplasticpotentialthatisindependentofhydrostaticstressinHillplasticitytheory .Butcompressedbyhydrostaticstress,considerabledeformationwillbeproducedinorthotropicmaterials.Inthecaseofcyclicloading ,duetoBauschingereffect,thekinematichardeningcannotbeneglected .Inthispaper,kinematichardeningandproportionalhardeningareconsidered…  相似文献   

11.
In this study we develop a gradient theory of small-deformation single-crystal plasticity that accounts for geometrically necessary dislocations (GNDs). The resulting framework is used to discuss grain boundaries. The grains are allowed to slip along the interface, but growth phenomenona and phase transitions are neglected. The bulk theory is based on the introduction of a microforce balance for each slip system and includes a defect energy depending on a suitable measure of GNDs. The microforce balances are shown to be equivalent to nonlocal yield conditions for the individual slip systems, yield conditions that feature backstresses resulting from energy stored in dislocations. When applied to a grain boundary the theory leads to concomitant yield conditions: relative slip of the grains is activated when the shear stress reaches a suitable threshold; plastic slip in bulk at the grain boundary is activated only when the local density of GNDs reaches an assigned threshold. Consequently, in the initial stages of plastic deformation the grain boundary acts as a barrier to plastic slip, while in later stages the interface acts as a source or sink for dislocations. We obtain an exact solution for a simple problem in plane strain involving a semi-infinite compressed specimen that abuts a rigid material. We view this problem as an approximation to a situation involving a grain boundary between a grain with slip systems aligned for easy flow and a grain whose slip system alignment severely inhibits flow. The solution exhibits large slip gradients within a thin layer at the grain boundary.  相似文献   

12.
A phenomenological study of parabolic and spherical indentation of elastic ideally plastic materials was carried out by using precise results of finite elements calculations. The study shows that no “pseudo-Hertzian” regime occurs during spherical indentation. As soon as the yield stress of the indented material is exceeded, a deviation from the, purely elastic Hertzian contact behaviour is found. Two elastic–plastic regimes and two plastic regimes are observed for materials of very large Young modulus to Yield stress ratio, E/σy. The first elastic–plastic regime corresponds to a strong evolution of the indented plastic zone. The first plastic regime corresponds to the commonly called “fully plastic regime”, in which the average indentation pressure is constant and equal to about three times the yield stress of the indented material. In this regime, the contact depth to penetration depth ratio tends toward a constant value, i.e. hc/h = 1.47. hc/h is only constant for very low values of yield strain (σy/E lower than 5 × 10?6) when aE1/y is higher than 10,000. The second plastic regime corresponds to a decrease in the average indentation pressure and to a steeper increase in the pile-up. For materials with very large E/σy ratio, the second plastic regime appears when the value of the non-dimensional contact radius a/R is lower than 0.01. In the case of spherical and parabolic indentation, results show that the first plastic regime exists only for elastic-ideally plastic materials having an E/σy ratio higher than approximately 2.000.  相似文献   

13.
Experimental studies on indentation into face-centered cubic (FCC) single crystals such as copper and aluminum were performed to reveal the spatially resolved variation in crystal lattice rotation induced due to wedge indentation. The crystal lattice curvature tensors of the indented crystals were calculated from the in-plane lattice rotation results as measured by electron backscatter diffraction (EBSD). Nye's dislocation density tensors for plane strain deformation of both crystals were determined from the lattice curvature tensors. The least L2-norm solutions to the geometrically necessary dislocation densities for the case in which three effective in-plane slip systems were activated in the single crystals associated with the indentation were determined. Results show the formation of lattice rotation discontinuities along with a very high density of geometrically necessary dislocations.  相似文献   

14.
万征  宋琛琛  孟达 《力学学报》2019,51(4):1210-1222
岩土材料在二维破坏模式下具有较强烈的曲线形态,在一般剪应力与正应力空间中提出用幂参数曲线来表达上述曲线,该曲线与摩尔圆的外切点即对应为破坏应力点,则利用该点的外切直线斜率的反正切值来得到有效滑移角.对于三维单元体,共存在三个有效滑移角,利用三个有效滑移角确定出空间有效滑移面.基于岩土材料为摩擦型材料这一基本特性,利用空间有效滑移面上的应力比为一定值作为衡量材料破坏与否的判断准则,基于上述思路推导得到了t强度准则,在偏平面上,t准则开口形状为介于Von-Mises圆形曲线到SMP曲边三角形形态.在子午面上,引入开口的幂函数作为反映静水压力效应以及剪切破坏的曲线,而闭口的水滴型屈服面函数作为反映体积压缩屈服曲线,反映了岩土材料的压剪耦合特性.基于所提出的t强度准则, 推导了变换应力公式,可将以$p,q$为应力量的二维模型简单方便的转换为三维应力状态本构模型.通过强度以及多种应力路径的测试对比,验证了所提t准则及基于该准则的变换应力公式的合理性.   相似文献   

15.
Summary The paper presents a thermodynamically consistent constitutive model for elasto-plastic analysis of orthotropic materials at large strain. The elastic and plastic anisotropies are assumed to be persistent in the material but the anisotropy axes can undergo a rigid rotation due to large plastic deformations. The orthotropic yield function is formulated in terms of the generally nonsymmetric Mandel stress tensor such that its skew-symmetric part is additionally taken into account. Special attention is focused on the convexity of the yield surface resulting in the nine-dimensional stress space. Of particular interest are new convexity conditions which do not appear in the classical theory of anisotropic plasticity. They impose additional constraints on the material constants governing the plastic spin. The role of the plastic spin is further studied in simple shear accompanied by large elastic and large plastic deformations. If the plastic spin is neglected, the shear stress response is characterized by oscillations with an amplitude strictly dependent on the degree of the plastic anisotropy.accepted for publication 2 March 2004  相似文献   

16.
An expression for the yield stress of anisotropic materials is applied to the anisotropic strength of hard rolled copper foils whose crystallographic texture is known. We assume that this crystallographic texture is the only cause of the anisotropic plastic behaviour of the material. The model used for the yield stress is also used to deduce:
  1. Stress-strain relations for isotropic polycrystalline materials;
  2. A formula for the fully plastic strain tensor, applied to anisotropic hard rolled copper foils.
For the anisotropic copper foils considered the calculated curves of the yield stress and of the strain tensor as a function of the angle x between rolling and tensile direction agree qualitatively with the measured values. However, the theory is not complete, since the yield stress and the plastic strain tensor are both a function of a parameter Q, the fraction of the number of available crystallographic slip planes on which the maximum shear stress has reached the critical value τa. We assume that for “fully” plastic deformation a certain critical fraction Q e of the total number of slip planes has to be active. The fraction Q e is called the critical active quantity. With the parameter Q e we adjust the calculated curves to the measured ones. The dependence of Q e on the properties of the material (e.g. the crystallographic texture) is discussed in Appendix I.  相似文献   

17.
In this study, the tractive rolling contact problem between a rigid cylinder and a graded coating is investigated. The main objective of this study is to investigate the effect of the stiffness ratio, the coefficient of friction and the coating thickness on the surface contact tractions, the surface in-plane stress, the stick zone length and the creep ratio parameter that may have a bearing on the fatigue life of the component. Assuming that the shear modulus varies exponentially through the thickness of the coating, the governing integral equations associated with the rolling contact problem are constructed. Furthermore, it is supposed that the contact patch is controlled by a central stick zone accompanied by two slip zones. The conventional Goodman approximation is employed in order to decouple the governing singular integral equations. Finally, the numerical solution of the integral equations is obtained by applying the Gauss–Chebyshev integration method.  相似文献   

18.
The paper deals with asymptotic behavior of viscoplastic solutions in the vicinity of maximum friction surfaces under plane strain conditions. The definition of maximum friction surfaces is that the friction stress is equal to the shear yield stress at sliding. The constitutive equations of the viscoplastic model adopted include a saturation stress. It is shown that it is possible to choose parameters of the viscoplastic model such that the regime of sliding is possible at maximum friction surfaces. In this case solutions are singular in the vicinity of such surfaces. Because of this feature of solutions, the viscoplastic model chosen possesses a smooth transition of qualitative behavior between rigid perfectly plastic and viscoplastic solutions, and this may prove to be advantageous for some applications.  相似文献   

19.
Solutions for the traction distributions and corresponding sub-surface state of stress adjacent to the edge of an incomplete contact suffering partial slip are found. The effects of frictional shakedown and a synchronously varying in-plane tension on the solution are found in closed form. The value of the asymptote, and its characterisation by just three independent parameters is illustrated by applying it to the finite problem of a rigid, tilted punch pressed onto a half-plane, and suffering partial slip induced by the application of in-plane tension.  相似文献   

20.
ABSTRACT

Constitutive laws for elastic-plastic materials are derived by eliminating the transverse stress component on the basis of the plane-strain constraint. This leads to a fictitious hardening and temperature dependence of the loading function. For standard elastic-plastic materials the resulting laws are associated; however, the plastic strain state is represented by equivalent plastic-strain measures, which also account for transverse yielding. The new constitutive laws, together with the standard reduced form of the equilibrium and compatibility equations, permit the formulation of the plane-strain elastic-plastic analysis problem in terms of the in-plane stress components only. In the case of perfectly plastic materials, the subsequent plane-strain yield surfaces are contained within a domain bounded by a limit surface which represents the yield condition normally adopted in plane-strain limit analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号