首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Let P=[pij] be a m×n matrix and let C be the coefficient matrix of Σj=1n pijxij=ui, 1≤im, Σi=1mpijxij=vj, 1≤jn. The relation between the reducibility of P and the rank of C is investigated. An application to martingale extension is given.  相似文献   

2.
We consider the problem of updating input-output matrices, i.e., for given (m,n) matrices A ? 0, W ? 0 and vectors u ? Rm, v?Rn, find an (m,n) matrix X ? 0 with prescribed row sums Σnj=1Xij = ui (i = 1,…,m) and prescribed column sums Σmi=1Xij = vj (j = 1,…,n) which fits the relations Xij = Aij + λiWij + Wij + Wijμj for all i,j and some λ?Rm, μ?Rn. Here we consider the question of existence of a solution to this problem, i.e., we shall characterize those matrices A, W and vectors u,v which lead to a solvable problem. Furthermore we outline some computational results using an algorithm of [2].  相似文献   

3.
A matrix ARn×n is called a bisymmetric matrix if its elements ai,j satisfy the properties ai,j=aj,i and ai,j=an-j+1,n-i+1 for 1?i,j?n. This paper considers least squares solutions to the matrix equation AX=B for A under a central principal submatrix constraint and the optimal approximation. A central principal submatrix is a submatrix obtained by deleting the same number of rows and columns in edges of a given matrix. We first discuss the specified structure of bisymmetric matrices and their central principal submatrices. Then we give some necessary and sufficient conditions for the solvability of the least squares problem, and derive the general representation of the solutions. Moreover, we also obtain the expression of the solution to the corresponding optimal approximation problem.  相似文献   

4.
《Journal of Complexity》1994,10(2):216-229
In this paper we present a minimal set of conditions sufficient to assure the existence of a solution to a system of nonnegative linear diophantine equations. More specifically, suppose we are given a finite item set U = {u1, u2, . . . , uk} together with a "size" viv(ui) ∈ Z+, such that vivj for ij, a "frequency" aia(ui) ∈ Z+, and a positive integer (shelf length) LZ+ with the following conditions: (i) L = ∏nj=1pj(pjZ+j, pjpl for jl) and vi = ∏ jAipj, Ai ⊆ {l, 2, . . . , n} for i = 1, . . . , n; (ii) (Ai\{⋂kj=1Aj}) ∩ (Al\{⋂kj=1Aj}) = ⊘∀il. Note that vi|L (divides L) for each i. If for a given mZ+, ∑ni=1aivi = mL (i.e., the total size of all the items equals the total length of the shelf space), we prove that conditions (i) and (ii) are sufficient conditions for the existence of a set of integers {b11, b12, . . . , b1m, b21, . . . , bn1, . . . , bnm}⊆ N such that ∑mj=1bij = ai, i = 1, . . . , k, and ∑ki=1bijvi = L, j =1, . . . , m (i.e., m shelves of length L can be fully utilized). We indicate a number of special cases of well known NP-complete problems which are subsequently decided in polynomial time.  相似文献   

5.
Let Rij be a given set of μi× μj matrices for i, j=1,…, n and |i?j| ?m, where 0?m?n?1. Necessary and sufficient conditions are established for the existence and uniqueness of an invertible block matrix =[Fij], i,j=1,…, n, such that Fij=Rij for |i?j|?m, F admits either a left or right block triangular factorization, and (F?1)ij=0 for |i?j|>m. The well-known conditions for an invertible block matrix to admit a block triangular factorization emerge for the particular choice m=n?1. The special case in which the given Rij are positive definite (in an appropriate sense) is explored in detail, and an inequality which corresponds to Burg's maximal entropy inequality in the theory of covariance extension is deduced. The block Toeplitz case is also studied.  相似文献   

6.
A sign-nonsingular matrix or L-matrix A is a real m× n matrix such that the columns of any real m×n matrix with the same sign pattern as A are linearly independent. The problem of recognizing square L-matrices is equivalent to that of finding an even cycle in a directed graph. In this paper we use graph theoretic methods to investigate L-matrices. In particular, we determine the maximum number of nonzero elements in square L-matrices, and we characterize completely the semicomplete L-matrices [i.e. the square L-matrices (aij) such that at least one of aij and aij is nonzero for any i,j] and those square L-matrices which are combinatorially symmetric, i.e., the main diagonal has only nonzero entries and aij=0 iff aji=0. We also show that for any n×n L-matrix there is an i such that the total number of nonzero entries in the ith row and ith column is less than n unless the matrix has a completely specified structure. Finally, we discuss the algorithmic aspects.  相似文献   

7.
Let f:NN be a function. Let An=(aij) be the n×n matrix defined by aij=1 if i=f(j) for some i and j and aij=0 otherwise. We describe the Jordan canonical form of the matrix An in terms of the directed graph for which An is the adjacency matrix. We discuss several examples including a connection with the Collatz 3n+1 conjecture.  相似文献   

8.
In the task of factoring a real n × n matrix A according to Gauss elimination with complete pivoting for size, Wilkinson conjectured in 1963 that the absolute values of the intermediate coefficients should not exceed the n-Max norm of the matrix, i.e. n Maxij{|aij|}. Such a conjecture would be wrong for the 1-norm Maxji |aij|}, and for the Schur-Frobenius norm (Σija2ij)12, as is shown by providing counterexamples. However, these stronger versions of Wilkinson's conjecture do hold in the case of matrices of low order.  相似文献   

9.
Let Kn denote the set of all n × n nonnegative matrices whose entries have sum n, and let ϕ be a real function on Kn defined by ϕ (X) = Πni=1Σnj=1xij + Πnj=1Σni=1xij − per X for X = [xij] ϵ Kn. A matrix A ϵ Kn is called a ϕ -maximizing matrix on Kn if ϕ (A) ⩾ ϕ (X) for all X ϵ Kn. It is conjectured that Jn = [1/n]n × n is the unique ϕ-maximizing matrix on Kn. In this note, the following are proved: (i) If A is a positive ϕ-maximizing matrix, then A = Jn. (ii) If A is a row stochastic ϕ-maximizing matrix, then A = Jn. (iii) Every row sum and every column sum of a ϕ-maximizing matrix lies between 1 − √2·n!/nn and 1 + (n − 1)√2·n!/nn. (iv) For any p.s.d. symmetric A ϵ Kn, ϕ (A) ⩽ 2 − n!/nn with equality iff A = Jn. (v) ϕ attains a strict local maximum on Kn at Jn.  相似文献   

10.
Forn pointsA i ,i=1, 2, ...,n, in Euclidean space ℝ m , the distance matrix is defined as a matrix of the form D=(D i ,j) i ,j=1,...,n, where theD i ,j are the distances between the pointsA i andA j . Two configurations of pointsA i ,i=1, 2,...,n, are considered. These are the configurations of points all lying on a circle or on a line and of points at the vertices of anm-dimensional cube. In the first case, the inverse matrix is obtained in explicit form. In the second case, it is shown that the complete set of eigenvectors is composed of the columns of the Hadamard matrix of appropriate order. Using the fact that distance matrices in Euclidean space are nondegenerate, several inequalities are derived for solving the system of linear equations whose matrix is a given distance matrix. Translated fromMatematicheskie Zametki, Vol. 58, No. 1, pp. 127–138, July, 1995.  相似文献   

11.
It is shown that, whenever m1, m2,…, mn are natural numbers such that the pairwise greatest common divisors, dij=(mi, mj), ij are distinct and different from 1, then there exist integers a1, a2,…,an such that the solution sets of the congruences xi (modmi), i= 1,2,…,n are disjoint.  相似文献   

12.
Let g and n be positive integers and let a1 = (g, n) and am = (gm, n). If h ≡ 0 (mod na1am), then the g-circulant whose Hall polynomial is equal to Σi=0h?1xi satisfies the matrix equation Am = λJ, where n is the size of matrix J.  相似文献   

13.
A pair (A, B), where A is an n × n matrix and B is an n × m matrix, is said to have the nonnegative integers sequence {rj}j=1p as the r-numbers sequence if r1 = rank(B) and rj = rank[B ABAj−1 B] − rank[B ABAj−2B], 2 ≤ jp. Given a partial upper triangular matrix A of size n × n in upper canonical form and an n × m matrix B, we develop an algorithm that obtains a completion Ac of A, such that the pair (Ac, B) has an r-numbers sequence prescribed under some restrictions.  相似文献   

14.
Let Kn denote the set of all n X n nonnegative matrices whose entries have sum n, and let φ be a real valued function defined on Kn by φ(X) = πin=1 n, + πj=1cjn per X for X E Kn with row sum vector (r1,…, rn) and column sum vector (cl,hellip;, cn). For the same X, let φij(X)= πkirk + π1≠jc1 - per X(i| j). A ϵKn is called a φ-maximizing matrix if φ(A) > φ(X) for all X ϵ Kn. Dittert's conjecture asserts that Jn = [1/n]n×n is the unique (φ-maximizing matrix on Kn. In this paper, the following are proved: (i) If A = [aij] is a φ-maximizing matrix on Kn then φij(A) = φ (A) if aij > 0, and φij (A) ⩽ φ (A)if aij = 0. (ii) The conjecture is true for n = 3.  相似文献   

15.
One presentation of the alternating groupA n hasn?2 generatorss 1,…,sn?2 and relationss 1 3 =s i 2 =(s1?1si)3=(sjsk)2=1, wherei>1 and |j?k|>1. Against this backdrop, a presentation of the alternating semigroupA n c )A n is introduced: It hasn?1 generatorss 1,…,S n?2,e, theA n-relations (above), and relationse 2=e, (es 1)4, (es j)2=(es j)4,es i=s i s 1 -1 es 1, wherej>1 andi≥1.  相似文献   

16.
An n × n real matrix A = (aij)n × n is called bi‐symmetric matrix if A is both symmetric and per‐symmetric, that is, aij = aji and aij = an+1?1,n+1?i (i, j = 1, 2,..., n). This paper is mainly concerned with finding the least‐squares bi‐symmetric solutions of matrix inverse problem AX = B with a submatrix constraint, where X and B are given matrices of suitable sizes. Moreover, in the corresponding solution set, the analytical expression of the optimal approximation solution to a given matrix A* is derived. A direct method for finding the optimal approximation solution is described in detail, and three numerical examples are provided to show the validity of our algorithm. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Soit (αij) une matrice symétrique n×n, à éléments réels, b un vecteur réel à n composantes et ? l'application de {0, 1)n dans lui-même, où la i-ème composante est une fonction à seuil avec séparateurΣnj=1αijyj<bi(yj=0,1). Dans ce papier nous démontrons que la composition successive de △ par elle-même, n'a, en régime stationnaire, que des points fixes où des cycles de longueur deux. Ceci englobe le comportement périodique d'une certaine classe d'automates cellulaires et des modèles en dynamique des groupes pour lesquels existaient seulement des résultats particuliers (1,4,5,6).Let (αij) be a symmetric real n×n matrix and b a real n-vector. Let △ be a function from {0, 1}n to itself, whose ith component is the threshold function with separator Σnj=1αijyj<bi(yj=0,1). It is shown that the repeated application of △, leads either to a fixed point or to a cycle of length two. This includes the periodic behaviour of a class of cellular automata and some models in groups dynamics (1,4,5,6).  相似文献   

18.
Let {Ln:n ? 1} be a sequence of the form
where {aj} and {bj} are positive integers, and e=maxi,j{ai, bj}. A necessary and sufficient condition on the integers {aj} and {bj} is given so that, for all choices of positive initial values L1, L2,…,Le,Ln=Σpj=1Ln?aj for all large enough n.  相似文献   

19.
One aspect of the inverse M-matrix problem can be posed as follows. Given a positive n × n matrix A=(aij) which has been scaled to have unit diagonal elements and off-diagonal elements which satisfy 0 < y ? aij ? x < 1, what additional element conditions will guarantee that the inverse of A exists and is an M-matrix? That is, if A?1=B=(bij), then bii> 0 and bij ? 0 for ij. If n=2 or x=y no further conditions are needed, but if n ? 3 and y < x, then the following is a tight sufficient condition. Define an interpolation parameter s via x2=sy+(1?s)y2; then B is an M-matrix if s?1 ? n?2. Moreover, if all off-diagonal elements of A have the value y except for aij=ajj=x when i=n?1, n and 1 ? j ? n?2, then the condition on both necessary and sufficient for B to be an M-matrix.  相似文献   

20.
LetX be a n-set and letA = [aij] be an xn matrix for whichaij ?X, for 1 ≤i, jn. A is called a generalized Latin square onX, if the following conditions is satisfied: $ \cup _{i = 1}^n a_{ij} = X = \cup _{j = 1}^n a_{ij} $ . In this paper, we prove that every generalized Latin square has an orthogonal mate and introduce a Hv -structure on a set of generalized Latin squares. Finally, we prove that every generalized Latin square of ordern, has a transversal set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号