首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The crystal structure of Cs[VOF3] · 12H2O has been determined and refined on the basis of three-dimensional X-ray diffractometer data (Mo radiation). The structure is monoclinic, a = 7.710(2), b = 19.474(7), c = 7.216(2)Å, β = 116.75(1)°, V = 967.5Å3, Z =8, space group Cc (No. 9). The final R and Rw were 0.0295 and 0.0300, respectively, for 1356 independent reflections and 117 variables.The structure contains two crystallographically different VOF5 octahedra linked so as to form complex chains. Two non-equivalent octahedra share one FF edge, forming V2O2F8 doublets. Two F atoms, connected to different V atoms within the doublet, form an edge in the adjacent equivalent V2O2F8 unit thus continuing the chain. The VO distances are 1.583(7) and 1.595(7) Å. The VF distances are in the range 1.881-2.205 Å, mean value: 1.989 Å. The H2O group is a crystal water molecule.  相似文献   

2.
The formula of a new compound isolated in the LaOsO system has been established by means of crystal structure determination. There are two La3Os2O10 units in a face-centered monoclinic unit cell (S.G. C2m); a = 7.911(2) Å, b = 7.963(2) Å, c = 6.966(2)Å, β = 115.76(2)°;. For 1082 intensities, collected on an automated single-crystal diffractometer, the final R value was 0.025 after absorption corrections. The structure consists of isolated Os2O10 clusters composed of two edge-shared OsO6 octahedra. These dimeric units are connected together by two types of La3+ ions in eightfold coordination. In view of the OsOs distance inside the pair (2.462 Å), La3Os2O10 provides an example of metal-metal bonding involving a transition metal in a half-integral formal oxidation state of 5.5.  相似文献   

3.
β-TeVO4 crystallizes in the monoclinic system with the space group P21c and the parameters: a = 4.379 Å, b = 13.502 Å, c = 5.446 Å, and β = 91.72°. Vanadium occupies the center of a square pyramid of oxygens, an extra oxygen is at VO = 2.77 Å. These distorted octahedra share corners forming puckered sheets parallel to (010). The sheets are held together by [Te2O6]4? groups in which tellurium is one-side coordinated by four oxygen atoms.  相似文献   

4.
The structure of Pb3O4 at 293 K has been refined to an R value of 0.06, using 29 neutron diffraction data obtained from a powdered sample.Oxygen atoms are displaced in the quadratic cell (space group P42mbc; a = 8.811 Å and c = 6.563 Å) with respect to previous results obtained by several authors. The interatomic PbIVO and PbIIO distances are compared with those found in other lead oxides. While the oxygen octahedra around PbIV atoms are characterized by bondings a little too long, the divalent lead coordination is characterized by bondings a little too short.  相似文献   

5.
Ba2V2O7 is triclinic with a = 13.571(3), b = 7.320(2), c = 7.306(2) Å, α = 90.09(1), β = 99.48(1), β = 99.48(1), γ = 87.32(1)°, V = 7.15.1 Å3, Z = 4, and space group P1. The crystal structure was solved by Patterson and Fourier methods and refined by full-matrix least-squares analysis to a Rw of 0.034 (R = 0.034) using 2484 reflections measured on a Syntex P1 automatic four-circle diffractometer. The structure has two unique divanadate groups that are repeated by the b and c lattice translations to form sheets of divanadate groups parallel to (100). These sheets are linked by four unique Ba atoms that lie between these sheets. Ba(1) and Ba(3) are coordinated by eight oxygens arranged in a distorted biaugmented triangular prism and a distorted cubic antiprism, respectively. Ba(2) is coordinated by 10 oxygens arranged in a distorted gyroelongated square dipyramid and Ba(4) is coordinated by nine oxygens arranged in a distorted triaugmented triangular prism. These coordination numbers are substantiated by a bond strength analysis of the structure, and the variation in 〈BaO〉 distances is compatible with the assigned cation and anion coordination numbers. Both divanadate groups are in the eclipsed configuraton with 〈VO(br)〉 bond lengths of 1.821(4) and 1.824(4) Å and VO(br)V angles of 125.6(3) and 123.7(3)°, respectively. Examination of the divanadate groups in a series of structures allows certain generalizations to be made. Longer 〈VO(br)〉 bond lengths are generally associated with smaller VO(br)V angles. When VO(br)V < 140°, the divanadate group is generally in an eclipsed configuration; when VO(br)V > 140°, the divanadate group is generally in a staggered configuration. Nontetrahedral cations with large coordination numbers require more oxygens with which to bond, and hence O(br) is more likely to be three coordinate, with the divanadate group in the eclipsed configuration. In the eclipsed configuration, decrease in VO(br)V promotes bonding between O(br) and nontetrahedral cations, and hence smaller nontetrahedral cations are generally associated with smaller VO(br)V angles.  相似文献   

6.
The phase equilibria in the V2O3Ti2O3TiO2 system have been determined at 1473°K by the quench method, using both sealed tubes and controlled gaseous buffers. For the latter, CO2H2 mixtures were used to vary the oxygen fugacity between 10?10.50 and 10?16.73 atm. Under these conditions the equilibrium phases are: a sesquioxide solid solution between V2O3 and Ti2O3 with complete solid solubility and an upper stoichiometry limit of (V, Ti)2O3.02; an M3O5 series which has the V3O5 type structure between V2TiO5 and V0.69Ti2.31O5 and the monoclinic pseudobrookite structure between V0.42Ti2.58O5 and Ti3O5; series of Magneli phases, V2Tin?2O2n?1TinO2n?1, n = 4–8; and reduced rutile phases (V, Ti)O2?x, where the lower limit for x is a function of the V(V + Ti) ratio. The extent of the different solid solution areas and the location of the oxygen isobars have been determined.  相似文献   

7.
The crystal structure of V0.985Al0.015O2 has been refined from single-crystal X-ray data at four temperatures. At 373°K it has the tetragonal rutile structure. At 323°K, which is below the first metal-insulator transition, it has the monoclinic M2 structure, where half of the vanadium atoms are paired with alternating short (2.540 Å) and long (3.261 Å) V-V separations. The other half of the vanadium atoms form equally spaced (2.935 Å) zigzag V chains. At 298°K, which is below the second electric and magnetic transition, V0.985Al0.015O2 has the triclinic T structure where both vanadium chains contain V-V bonds, V(1)-V(1) = 2.547 Å and V(2)-V(2) = 2.819 Å. At 173°K the pairing of the V(1) chain remains constant: V(1)-V(1) = 2.545 Å, whereas that of the V(2) chain decreases: V(2)-V(2) = 2.747 Å. From the variation of the lattice parameters as a function of temperature it seems that these two short V-V distances will not become equal at lower temperatures. The effective charges as calculated from the bond strengths at 298 and 173°K show that a cation disproportionation has taken place between these two temperatures. About 20% of the V4+ cations of the V(1) chains have become V3+ and correspondingly 20% of the V4+ cations of the V(2) chains have become V5+. This disproportionation process would explain the difference between the two short V-V distances. Also it would explain why the TM1 transition does not take at lower temperatures.  相似文献   

8.
The spinels of the system LixMn1?xV2O4 (0 ? x ? 1) have been prepared at 700–750°C from LiV2O4 and MnV2O4. The lattice constants decrease linearly with increasing x. In the region x>0.75, the d-electrons of V should be delocalized as the VV distances are lower than the critical VV separation of 2.94 Å. Experimentally, the samples with x>0.6 show no IR absorption bands and the Seebeck coefficient is near zero. The Seebeck coefficient can be described with a model of intermediate polarons and can be expressed by the equation Θ = 198 log [1 + (1 ? x)5x].  相似文献   

9.
The magnetic and electric properties of V2O3+x were investigated by measurements of magnetic susceptibility, electrical resistivity, magnetotorque, Mössbauer of doped 57Fe, and NMR of 51V, and the results were compared with those of the (V1?xTix)2O3 system or highly pressured V2O3. The results obtained are as follows: (1) The metallic state shows an antiferromagnetic ordering at TN (x). The value of TN for metallic V2O3, obtained by interpolation to x = 0, shows the coincidence between V2O3+x and the (V1?xTix)2O3 system. (2) Magnetic susceptibility of V2O3+x is expressed as χM(V2O3+x) = (1?x)χM(V3+) + M(V4+). χM(V4+) obeys the Curie-Weiss law M(V4+) = 0.77T + 17). (3) In the insulating phase, the electrical resistivity ? is expressed as a common equation: ? = 10?1.8exp(EkT). This implies that the substitution of Ti or nonstoichiometry (V+4 + metal vacancies) has little influence on the carrier mobility (or bandwidth). (4) There is a critical length in the c-axis (? 14.01 Å) where the metal-insulator transition takes place. This suggests that the length of the c-axis plays an important role in the metal-insulator transition of V2O3-related compounds.  相似文献   

10.
A single crystal study of Ba3Pt2O7 shows that the structure tolerates a variable composition which can be written Ba3Pt2+xO7+2x. The crystal studied has a hexagonal cell of dimensions a = 10.108 ± 0.006 Å and c = 8.638 ± 0.009 Å, and a probable space group P62c, Z = 4. The density determined by water displacement is 7.99 g/cm3; the theoretical density for Ba3Pt2O7 is 7.94 g/cm3. The structure was determined from the set of 401 observed independent reflections obtained from 5189 reflections measured by automated counter methods. Refinement on F was carried to a conventional R of 8.0%. The structure has barium-oxygen layers with an essentially four-layer stacking sequence of the double hexagonal (ABAB) type. Platinum is found mainly in face-sharing octahedra, but is also distributed over some sites in which the coordination is nearly square planar and other sites in which the coordination is trigonal prismatic with three PtO bond lengths of 2.00 Å and three long PtO distances of 2.65 Å. The platinum with planar coordination is 0.08 Å from the plane of the four oxygen atoms.  相似文献   

11.
The structure of (Ti0.9975V0.0025)4O7 has been refined at 298, 135, and 100°K from single-crystal X-ray diffraction data. This sample belongs to the region of the Ti4O7V4O7 phase diagram where still two electrical transitions are observed. The three structures of the V-doped sample are almost identical to the corresponding structures of pure Ti4O7. The charges are disordered in the metallic phase, they order very slightly in the intermediate phase, and they are almost completely ordered along the 3113 and the 4224 chains in the low-temperature phase. There is no evidence of cation pair-bond formation in the intermediate phase, whereas the Ti3+ cations are all paired in the low-temperature phase. The cationic Debye-Waller factors in the intermediate phase are anomalously large, which is indicative of a disorder. Thus, in order to explain the physical properties of the intermediate phase, as in the case of the pure sample, all the Ti3+ cations are thought to form pair bonds with no long-range order. The TiTi distances along the pseudorutile c-axis are shorter in the V-doped sample than in the pure one. This indicates that the relative bond strengths increase with the incorporation of vanadium. The main difference between pure Ti4O7 and (Ti0.9975V0.0025)4O7 is in the lattice parameters and unit-cell volume variations with temperature. In the latter sample two discontinuities are observed, each corresponding to one transition, whereas in the former only one transition is observed, which corresponds to the higher transition. In the low-temperature phase the V cations are either 3+ or 4+ and are either on the 3113 chains or on the 4224 chains. The V doping gives rise to four different patterns. Each one is discussed in order to explain the differences between V-doped sample and pure Ti4O7.  相似文献   

12.
PV2S10 was obtained by heating the elements in stoichiometric proportions at 490°C in evacuated Pyrex tubes. The crystal symmetry is monoclinic, space group P21c, with the unit cell parameters a = 12.734(8)Å, b = 7.349(7)Å, c = 23.662(4)Å, β = 95°22(1), V = 2205(4)Å3, and Z = 8. The structure was solved from 2269 independant reflexions, and anisotropic least squares refinement gave R = 0.036 with 236 variables. The structure can be described as made of [V2S12] units forming endless chains themselves linked, two by two, by [PS4] tetrahedra. In these units each vanadium is surrounded by eight sulfur atoms (mean dVS = 2.459Å) arranged in a distorted bicapped triangular prism. Two of these prisms shared a rectangular face to form [V2S12] groups, in which intercationic distances implied vanadium-vanadium bonds (mean dVV = 2.852(2)Å). Between the infinite double chains, only SS weak van der Waals' bonds exist. More than two thirds of the sulfur atoms are present as [SS]?II pairs, (mean dSS = 2.015Å); the rest are S?II anions.  相似文献   

13.
LLi2Mo4o13 crystallizes in the triclinic system with unit-cell dimensions a = 8.578 Å, b = 11.450 Å, c = 8.225 Å, α = 109.24°, β = 96.04°, γ = 95.95° and space group P1, Z = 3. The calculated and measured densities are 4.02 g/cm3 and 4.1 g/cm3 respectively. The structure was solved using three-dimensional Patterson and Fourier techniques. Of the 2468 unique reflections collected by counter methods, 1813 with I ? 3σ(I) were used in the least-squares refinement of the model to a conventional R of 0.031 (ωR = 0.038). LLi2Mo4O13 is a derivative of the V6O13 structure with oxygen ions arranged in a face-centred cubic type array with octahedrally coordinated molybdenum and lithium ions ordered into layers.  相似文献   

14.
FeIIFeIII2F8(H2O)2 and MnFe2F8(H2O)2, grown by hydrothermal synthesis (P ? 200 MPa, T = 450 or 380°C), crystallize in the monoclinic system with cell dimensions (Å): a = 7.609(5), b = 7.514(6), c = 7.453(4), β = 118.21(3)°; and a = 7.589(6), b = 7.503(8), c = 7.449(5), β = 118.06(3)°, and space group C2m, Z = 2. The structure is related to that of WO3 · 13H2O. It is described in terms of perovskite type layers of Fe3+ octahedra separated by Fe2+ or Mn2+ octahedra, or in terms of shifted hexagonal bronze type layers. Both compounds present a weak ferromagnetism below TN (157 and 156 K, respectively). Mössbauer spectroscopy points to an “idle spin” behavior for FeIIFeIII2F8(H2O)2: only Fe3+ spins order at TN, while the Fe2+ spins remain paramagnetic between 157 and 35 K. Below 35 K, the hyperfine magnetic field at the Fe2+ nuclei is very weak: Hhf = 47 kOe at T = 4.2 K. For MnFe2F8(H2O)2, Mn2+ spin disorder is expected at 4.2 K. This “idle spin” behavior is due to magnetic frustration.  相似文献   

15.
NbO2, Nb0.98V0.02O2, and Nb0.95V0.05O2 transform from semiconducting to metallic state at temperatures higher than the DTA phase-transition temperatures. Vibrational mode softening and c-axis NbNb pairing appear to be important factors in the mechanism of these transitions. In the solid solutions, ca ratio is maximum at x = 0.5 since the metal-metal interaction along the c axis becomes minimum; conductivity is minimum at this composition since there are no mobile electrons.  相似文献   

16.
Reaction of BaO, Nb2O5, and Nb in mole ratios of 2.4:1.6:1 in an evacuated silica capsule at 1250°C produces a mixture of at least two products, one of which has the probable composition Ba6+xNb14Si4O47 (x ? 0.23). This compound has an hexagonal unit cell of dimensions a = 9,034 ± 0.004 Å, c = 27.81 ± 0.02 Å, probable space group P63mcm, Z = 2. Its structure has been determined from 942 independent reflections collected by a counter technique and refined by least squares methods to a conventional R value of 0.062. The basic structure consists of strings of four NbO6 octahedra sharing opposite corners, each string joined to the next by edge sharing of the end octahedra, so that the c axis corresponds to the length of a strand of seven corner-linked octahedra. Chains of three such strands are formed by corner sharing between the strands. The chains in turn are joined by NbO6 octahedra and Si2O7 groups in which the SiOSi linkage is linear. Barium atoms are in sites between the chains coordinated by 13 oxygen atoms. A second site, 15 coordinated, probably has a small amount of barium as well; the fractional occupancy for barium in this site is 0.076.  相似文献   

17.
The cubic perovskite Sr(Co1?xMnx)O3 has a maximum value of a-axis at x = 0.3 and a change of spin state of Co4+ ion from low to high. To elucidate these properties, the isotropic temperature factor (B) of strontium, cobalt, manganese, and oxygen atoms for x = 0, 0.1, 0.5, 0.8, and 0.1 have been derived from powder X-ray diffraction measurements. The isotropic temperature factor of oxygen for x = 0, 0.1, and 1.0 is small and that for x = 0.5 and 0.8 is large. This fact suggests that the oxygen ion deviates from the center of the CoOMn bond in the solid solutions with x ≧ 0.3. Larger CoO6 octahedra and smaller MnO6 octahedra, which are connected by corner sharing of oxygens of the octahedron, are distributed statistically.  相似文献   

18.
The magnetic interaction in the structural units [Fe2O7]8?, built of two corner-sharing FeO4 tetrahedra, in Na8Fe2O7 (Na2OFe2O3 = 41) has been studied by magnetic susceptibility measurements (4.2–500 K). An exchange integral JKB of ?37 K is obtained by comparison of the experimental values and the calculated ones using a Heisenberg-Dirac-Van Vleck-type Hamiltonian ? = ?2JS?1S?2. The hypothesis of magnetically isolated [Fe2O7]8? groups is corroborated by Mössbauer spectroscopy between 1.5 and 77 K. The susceptibility measurements of the solid solutions Na8Fe2?xMxO7 (M = Al, Ga; 0 ≤ x ≤ 0.2 for Al; 0 ≤ x ≤ 2 for Ga) leads to the same conclusion of the existence of isolated Fe3+Fe3+ pairs in Na8Fe2O7. The type of substitution of Fe by Al or Ga is determined; homonuclear Fe3+Fe3+ and M3+M3+ pairs and heteronuclear Fe3+M3+ pairs are formed.  相似文献   

19.
Nickel-ammonium tetrametaphosphate, Ni(NH4)2P4O12 · 7H2O is triclinic with a = 13.841(3); b = 9.621(5); c = 7.482(2)Å; α = 98.05(4); β = 97.25(4); γ = 103.01(4)°; M = 536.59; V = 947.9Å3; Z = 2; Dx = 1.879 g cm?3; μ = 14.524 cm?1, and space group P1. The crystal structure was solved using 1661 independent reflections measured on a single-crystal diffractometer (Mo). The final R value is 0.056. The two crystallographic independent nickel atoms Ni(1) and Ni(2) are octahedrally coordinated: Ni(1) by four oxygen atoms and two water molecules, Ni(2) by six water molecules. Ni(1), closely connected to two P4O12 rings, forms a complex anion [Ni(P4O12)2(H2O)2]6? which is associated to ammonium polyhedra and [Ni(H2O)6]2+ octahedra. Another interesting feature of this atomic arrangement is the presence of a large channel (10 × 4) Å2 parallel to the c axis. The internal surface of this channel is covered by six zeolitic water molecules.  相似文献   

20.
Rb10Ta29.20O78 crystallizes in the hexagonal system with unit-cell dimensions (from single-crystal data) a = 7.503(4)Å, c = 36.348(4)Å, and space group P63mmc, z = 1. The structure was solved using three-dimensional Patterson and Fourier techniques. Of the 666 unique reflections measured by counter techniques, 515 with I ? 3σ(I) were used in the least-squares refinement of the model to a conventional R of 0.057 (Rω = 0.039). The structure of Rb10Ta29.20O78 consists of layers of corner-sharing groups of six edge-shared octahedra separated by layers of single octahedra and double hexagonal tungsten bronze-like layers, these layers being perpendicular to the hexagonal c-axis. Nine-coordinate tricapped trigonal prismatic sites between the hexagonal tungsten bronze-like layers are partially occupied by Ta(V) ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号