首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The crystal structure of dibarium triferrite Ba2Fe6O11 has been solved by direct methods, using intensity data collected by means of an automated diffractometer (MoKα radiation) and corrected for absorption. It crystallizes in the orthorhombic space group Pnnm: a = 23.024(10)Å, b = 5.181(3) Å, c = 8.900(4) Å, Z = 4. Program MULTAN was successfully used for locating Ba2+ and most of the Fe3+ ions. The structure was further refined by conventional Fourier and least-squares methods (full-matrix program) to a final R value of 0.045 for 1448 observed reflections. Fe3+ ions occur in both octahedral (FeO mean distance: 2.02 Å) and tetrahedral (FeO mean distance: 1.865 Å) coordination. Two types of Ba2+ ions are found, with six and seven neighboring oxygen atoms. The structure consists of sheets of edge-shared FeO6 octahedra which are connected by means of corner-shared tetrahedra.  相似文献   

2.
The structures of BaTi2Fe4O11 and BaSn2Fe4O11 have been determined from neutron powder diffraction data collected at 300 K using the Rietveld profile refinement. The compounds were found to be isostructural, space group P63mmc. BaTi2Fe4O11: a = 5.8470(2) Å, c = 13.6116(9) Å, V = 403.01(5) Å3, M = 632.6, Z = 2, Dcalc. = 3.09 Mg m?3, final R-factor = 3.77. BaSn2Fe4O11: a = 5.9624(5) Å, c = 13.7468(14) Å, V = 423.23(10) Å3, M = 774.2, Z = 2. Dcalc. = 3.66 Mg m?3, final R-factor = 2.41. The structure consists of h-stacked BaO3 and O4 layers in the ratio 1:2. The BaO3 layers contain a mirror plane. Between the O4 layers three octahedral sites are occupied, and between the BaO3 and O4 layers an octahedral site and a tetrahedral site are occupied. Because of the mirror plane in the BaO3 plane the latter sites both share faces in the BaO3 plane. The octahedral sites are occupied by Fe and Ti or Sn, the pair of tetrahedral sites is occupied by one Fe atom. This Fe atom may hop between these two tetrahedral sites. The structure is considered to be constructed by two R-blocks of the BaFe12O19 (M) structure. Unit-cell dimensions are given of a number of isostructural compounds of general formula AIIBIV2CIII3O11. Mössbauer experiments on some of these compounds were focused on the tetrahedral positions that show an unusual quadrupole splitting. A brief review is given of the observed magnetic properties of some compounds with the R-structure.  相似文献   

3.
The magnetic interaction in the structural units [Fe2O7]8?, built of two corner-sharing FeO4 tetrahedra, in Na8Fe2O7 (Na2OFe2O3 = 41) has been studied by magnetic susceptibility measurements (4.2–500 K). An exchange integral JKB of ?37 K is obtained by comparison of the experimental values and the calculated ones using a Heisenberg-Dirac-Van Vleck-type Hamiltonian ? = ?2JS?1S?2. The hypothesis of magnetically isolated [Fe2O7]8? groups is corroborated by Mössbauer spectroscopy between 1.5 and 77 K. The susceptibility measurements of the solid solutions Na8Fe2?xMxO7 (M = Al, Ga; 0 ≤ x ≤ 0.2 for Al; 0 ≤ x ≤ 2 for Ga) leads to the same conclusion of the existence of isolated Fe3+Fe3+ pairs in Na8Fe2O7. The type of substitution of Fe by Al or Ga is determined; homonuclear Fe3+Fe3+ and M3+M3+ pairs and heteronuclear Fe3+M3+ pairs are formed.  相似文献   

4.
By using neutron diffraction together with anomalous dispersion X-ray diffraction, it has been possible to ascertain the distribution of close atomic numbered cations in CoMnxFe2?xO4 system spinels.At 950°C, these compounds have a cubic structure in the range 0 ? x ? 1.25 and exhibit a macroscopic tetragonal distortion as soon as 60% of the Mn3+ ions occupy octahedral sites.The great mobility of cobalt between both types of sites has been pointed out; it can be related to oxidation and reduction phenomena. In these compounds, Fe3+ iron remains neutral towards four or six coordinences.  相似文献   

5.
The phase relations in the In2O3Fe2O3CuO system at 1000°C, the In2O3Ga2O3CuO system at 1000°C, the In2O3Fe2O3CoO system at 1300°C, and the In2O3Ga2O3CoO system at 1300°C were determined by means of a classical quenching method. InFeCuO4 (a = 3.3743(4) Å, c = 24.841(5) Å), InGaCuO4 (a = 3.3497(2) Å, c = 24.822(3) Å), and InGaCoO4 (a = 3.3091(2) Å, c = 25.859(4) Å) having the YbFe2O4 crystal structure, In2Fe2CuO7 (a = 3.3515(2) Å, c = 28.871(3) Å), In2Ga2CuO7 (a = 3.3319(1) Å, c = 28.697(2) Å), and In2FeGaCuO7 (a = 3.3421(2) Å, c = 28.817(3) Å) having the Yb2Fe3O7 crystal structure, and In3Fe3CuO10 (a = 3.3432(3) Å, c = 61.806(6) Å) having the Yb3Fe4O10 crystal structure were found as the stable ternary phases. There is a continuous series of solid solutions between InFeCoO4 and Fe2CoO4 which have the spinel structure at 1300°C. The crystal chemical roles of Fe3+ and Ga3+ in the present ternary systems were qualitatively compared.  相似文献   

6.
A single crystal study of Ba3Pt2O7 shows that the structure tolerates a variable composition which can be written Ba3Pt2+xO7+2x. The crystal studied has a hexagonal cell of dimensions a = 10.108 ± 0.006 Å and c = 8.638 ± 0.009 Å, and a probable space group P62c, Z = 4. The density determined by water displacement is 7.99 g/cm3; the theoretical density for Ba3Pt2O7 is 7.94 g/cm3. The structure was determined from the set of 401 observed independent reflections obtained from 5189 reflections measured by automated counter methods. Refinement on F was carried to a conventional R of 8.0%. The structure has barium-oxygen layers with an essentially four-layer stacking sequence of the double hexagonal (ABAB) type. Platinum is found mainly in face-sharing octahedra, but is also distributed over some sites in which the coordination is nearly square planar and other sites in which the coordination is trigonal prismatic with three PtO bond lengths of 2.00 Å and three long PtO distances of 2.65 Å. The platinum with planar coordination is 0.08 Å from the plane of the four oxygen atoms.  相似文献   

7.
Fe2P2O7 crystallizes in the C1 space group with lattice parameters a = 6.649(2)Å, b = 8.484(2)Å, c = 4.488(1)Å, α = 90.04°, β = 103.89(3)°, γ = 92.82(3)°, and ?cal = 3.86 g/cc. It is essentially isostructural with β-Zn2P2O7. As in the Zn compound, the bridging oxygen atom in the P2O7 group shows a high anisotropic thermal motion. It appears that the P-O-P bond angle is linear as a result of extensive π bonding with the p orbitals on the bridging oxygen atom. The high thermal motion is vibration of the atom into cavities in the structure.  相似文献   

8.
The crystal structure of BaSn0.9Fe5.47O11 was determined using neutron powder diffraction data and the profile refinement method. The hexagonal compound, space group , has hcc-stacked BaO3 and O4 layers. A new building unit for this type of structure is introduced, the Q block with formula Ba2M7O14, consisting of two c-stacked BaO3 layers and two O4 layers. Between the BaO3 and O4 layers one tetrahedral and one octahedral site is occupied; between the BaO3 layers there are no other cations. BaSn0.9Fe5.47O11 shows a magnetic behavior with an ordering temperature Tc of 420 K. Starting models for the structure determination were derived from the known structures of hexagonal ferrites and related compounds. Several isomorphs with formula Ba2Sn2M2+Fe10O22 could be prepared, in which a partial substitution of Fe by Ga is possible. The nonstoichiometry of BaSn0.9Fe5.47O11 can be explained by the surplus of positive charge if the available tetrahedral and octahedral sites of the structure are completely occupied with Sn4+ and Fe3+. To achieve charge compensation either the occupation rates of Sn4+ and Fe3+ have to be lowered or a divalent ion has to be introduced, as is effected in the isomorphs.  相似文献   

9.
A new noncentrosymmetric ferroborate crystal, K2Fe2B2O7, has been grown from high temperature melt. Structure solution from single crystal X-ray diffraction shows that the title compound crystallizes in a trigonal space group P321 with cell dimensions of a=8.7475(12) Å and c=8.5124(17) Å. In the structure, FeO4 tetrahedron shares its three basal oxygen atoms with BO3 triangles forming a two-dimensional layer in the ab plane and the layers are connected by the apical Fe-O bonds along the c direction. The crystal is transparent in the visible and near infrared region from 500 to 2000 nm with three pronounced absorption bands ascribed to d-d transitions of tetrahedrally coordinated Fe3+ ions. Though, structurally analog to K2Al2B2O7, the further twisting of the BO3 groups between adjacent layers reduces its optical nonlinearity to a second-harmonic generation intensity of about 0.4 times that of KDP. Spin-glass behavior is observed at 20 K which is probably due to geometrically magnetic frustration of the triangular Fe net in the ab plane.  相似文献   

10.
The accommodation of Co in the oxygen-saturated solid-solution phase YBa2(Fe1−zCoz)3O8+w has been investigated by powder X-ray and neutron diffraction techniques, as well as by Mössbauer spectroscopy. Of the nominal composition range 0.00?z?1.00 tested, the solid-solution limit under syntheses at 950°C in is z=0.47(5). No symmetry change in the nuclear and magnetic structures is seen as a consequence of the Co substitution, and the Co atoms are distributed evenly over the two sites that are square-pyramidally and octahedrally coordinated for w=0. The oxygen-saturated samples maintain their oxygen content roughly constant throughout the homogeneity range, showing that Co3+ replaces Fe3+. Despite the nearly constant value of w, Mössbauer spectroscopy shows that the amount of tetravalent Fe slightly increases with increasing z, and this allows Co to adopt valence close to 3.00 to a good approximation. The magnitude of the antiferromagnetic moment (located in the a,b plane) decreases with z in accordance with the high-spin states of the majority Fe3+ and Co3+ ions. Bond-valence analyses are performed to illustrate how the structural network becomes increasingly frustrated as a result of the substitution of Fe3+ by the smaller Co3+ ion. A contrast is pointed out with the substitution of cobalt in YBa2Cu3O7 where it is a larger Co2+ ion that replaces smaller Cu2+.  相似文献   

11.
V4O7 has a transition with decreasing temperature at 250 K and the structure has been refined at 298 and 200 K. The triclinic structure (A1) consists of rutile-like layers of VO6 octahedra extending indefinitely in the a-b plane and four octahedra thick along the c-axis. The average VO distances for the four independent V atoms are 1.967, 1.980, 1.969, and 1.984 Å at 298K and 1.948, 1.992. 1.961, and 2.009 Å at 200K. At 200K there is a clear separation into strings of V3+ or V4+ ions running parallel to the pseudorutile c-axis. In addition, all of the 3+ and half of the 4+ sites are paired to form short VV bonds. The remaining V4+ atom is displaced toward one oxygen so as to balance its electrostatic charge. The distortion at the metal-insulator transitions in V4O7, Ti4O7, VO2 + Cr, and NbO2 are compared.  相似文献   

12.
The compound La2Fe2S5 is orthorhombic. Cell parameters are: a = 3.997(2)Å; b = 16.485(5)Å; c = 11.394(4)Å. Space group is Cmc21 (Z = 4. In the cell, chains of polyedra comprised of sulfur atoms tetrahedrally or octahedrally coordinating centrally located iron atoms give a monodimensional character to the structure. This one is refined to R = 0.037. To complete the study of these chains, in the La2Fe2?xS5 system, vacancies are introduced on iron atom sites. The ordered compound, La2Fe1.87S5, having such vacancies, is an orthorhombic superstructure of the stoechiometric compound. Cell parameters are: a = 3.9996(5)Å; b = 49.508(3)Å; c = 11.308(3)Å. Space group is Cmc21 and Z = 12. The structure is refined to R = 0.068. Only two iron atom sites have vacancies. One is tetrahedral, the other octahedral. In this last case the chain deformations are the more important. The chain becomes a sort of tunnel made of atoms of sulfur, with in its center the short iron-iron separation of 2.82 Å.  相似文献   

13.
The crystal structure of Na7Mg4.5(P2O7)4 has been solved by direct methods from the three-dimensional X-ray data. The space group is P1. The crystal structure consists of Mg2+, Na+, and P2O4?7 ions. One magnesium atom at symmetry center (0,0,0) and two sodium atoms at ±(?0.0421, ?0.0596, 0.2230) display occupation factors 0.5 each. A short interatomic distance between these Na+ and Mg2+ ions (1.80 ± 0.01 Å) excludes the occupation of both sites in the same unit cell. The crystal structure of Na7Mg4.5(P2O7)4 consists of unit cells containing Na8Mg4(P2O7)4 or Na6Mg5(P2O7)4 with a statistical occurrence 1:1.Each Mg2+ ion is octahedrally coordinated by six O2? ions at distances 1.979 – 2.270 Å. The coordination polyhedra around the Na+ ions are ill-defined. The bond angles POP in the P2O4?7 groups are 126.6 and 133.6° (±0.3°). The final reliability factor R is 7.1%.  相似文献   

14.
The silicate compounds Sc2Si2O7 and In2Si2O7 have been converted from thortveitite type to pyrochlore type at 1000°C, 120 kbar, with resulting cell constants of 9.287(3) and 9.413(3) Å, respectively. Invariant reflection intensities in the X-ray powder diffraction patterns allowed precise absorption corrections to be made, and refinement of thermal parameters and of the single structural parameter x gave values of 0.4313(21) and 0.4272(15), respectively. The corresponding six-coordinate SiO distances were 1.761(7) and 1.800(5) Å, and the average eight-coordinate distances for ScO8 and InO8 were 2.267 and 2.275 Å. Values of structure-refined bond lengths for compounds containing six-coordinate silicon are surveyed, and overall weighted average octahedral distances of 1.782(14) Å for SiO and 2.520(18) Å for OO are derived. Pyrochlore phases were not produced from rare-earth disilicate or monosilicate phases subjected to the same reaction conditions as the Sc and In compounds.  相似文献   

15.
Two pure light rare earth iron garnets Pr3Fe5O12 and Nd3Fe5O12 single crystals were synthesized under mild hydrothermal conditions and structurally characterized by single crystal and powder X-ray diffraction methods. Both compounds crystallize in cubic space group Ia3?d with lattice parameters a=12.670(2) Å for Pr3Fe5O12 and a=12.633(2) Å for Nd3Fe5O12, respectively. The synthesis of compounds was studied with regard to phase evolution and morphology development with hydrothermal conditions. We proposed the formation mechanisms and formulated a reasonable explanation for their growth habits. Ferrimagnetic Curie temperatures which have been inferred from thermo-magnetization curves were 580 K for Pr3Fe5O12 and 565 K for Nd3Fe5O12, and the transitions of long range order were also evidenced by differential scanning calorimetry method. The result of magnetic properties has shown that moments of the large radius Pr3+ and Nd3+ ions are parallelly coupled with net moments of iron ions.  相似文献   

16.
The n=3 Aurivillius material Bi2Sr2Nb2.5Fe0.5O12 is investigated and combined structural refinements using neutron powder diffraction (NPD) and X-ray powder diffraction data (XRPD) data reveal that the material adopts a disordered, tetragonal (I4/mmm) structure at temperatures down to 2 K. Significant ordering of Fe3+ and Nb5+ over the two B sites is observed and possible driving forces for this ordering are discussed. Some disorder of Sr2+ and Bi3+ over the M and A sites is found and is consistent with relieving strain due to size mismatch. Highly anisotropic thermal parameters for some oxygen sites suggest that the local structure may be slightly distorted with some rotation of the octahedra. Magnetic measurements show that the material behaves as a Curie-Weiss paramagnet in the temperature range studied with no evidence of any long-range magnetic interactions. Solid solutions including Bi3−xSrxNb2FeO12, Bi2Sr2−xLaxNb2FeO12 and Bi2Sr2Nb3−xFexO12 were investigated but single-phase materials were only successfully synthesised for a narrow composition range in the Bi2Sr2Nb3−xFexO12 system.  相似文献   

17.
The structure of ferrimagnetic γ-Na5Fe3F14 has been determined by single-crystal X-ray diffraction. The cell is tetragonal with space group P42212 and parameters a = 7.345 ± 0.007 Å and c = 10.400 ± 0.007 Å. The iron atoms occupy a twofold and a fourfold position in the lattice and are octahedrally surrounded by fluorines. These octahedra share corners and form two-dimensional layers of formula (Fe3F14)5n?n. The Mössbauer spectra were measured from 4.2 to 293°K and the results are discussed in terms of the position and environment of iron atoms in the lattice.  相似文献   

18.
The bulk magnetic behaviors of the pyrochlores Yb2V2O7 and Tm2V2O7 were investigated. Calculated susceptibilities were adjusted to obtain the best fit to experimental data. A cubic crystal field Hamiltonian was used with B°4 = ?0.633 and B°6 = 0.000705 K for Yb3+ and B°4 = 0.0297 and B°6 = 0.000339 K for Tm3+. The calculated susceptibility for Yb3+ was found to be insensitive to the addition of an axial B°2 parameter to the cubic Hamiltonian.  相似文献   

19.
Two new Sr-rich “1201”-type oxides, Bi0.4Sr2.5Cr1.1O4.9 and Bi0.4Sr2.5Fe1.1O5 have been synthesized. These compounds, intergrowths of double rock-salt layers with single perovskite layers, show a 1:1 ordering between (Bi,M) and Sr species within the intermediate rock-salt layer [Bi0.4M0.1Sr0.5O]. The XANES study shows that bismuth is mainly trivalent, whereas iron is mixed valent containing 50% Fe3+ and 50% Fe4+ (also confirmed by Mössbauer), and chromium could be a mixture of Cr3+ and Cr6+ sitting in the perovskite and rock-salt-type sites, respectively. Both compounds exhibit antiferromagnetic interactions. The Cr-phase is a strong insulator, whereas the Fe-phase exhibits a semi-conductor-like resistivity whose value at room temperature is close to that of isotypic cobaltite.  相似文献   

20.
The high-temperature form of NaFeP2O7 crystallizes in the monoclinic P21c space group with a = 7.3244(13), b = 7.9045(7), c = 9.5745(15), Å, β = 111.858(13)°, and Z = 4. The structure has been refined from 3842 reflections leading to R = 0.040 and Rw = 0.047. The structure of II-NaFeP2O7 can be described by alternately stacking layers containing the FeO6 octahedra and layers formed by the P2O7 groups, parallel to (001). Elongated cages are formed where two Na+ ions are located. The structure is compared with that of KAlP2O7. Both structures are built up from blocks of three polyhedra, [FeP2O11] or [AlP2O11], including a small OoctOtetOoct angle. These blocks are connected in such a way that several types of tunnels appear in each structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号