首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The arrangement of discrete screw dislocations piled-up under the action of a uniform applied stress against the welded interface between different elastically isotropic half-spaces has been determined by representing the pile-up as a continuous distribution of infinitesimal dislocations. The dislocation slip plane is inclined at an arbitrary angle 12 to the normal to the interface, assuming a to be a rational number. The singular integral equation expressing the condition for static equilibrium of the dislocations under a constant applied stress is solved by a method based on the Wiener-Hoph technique with the Mellin transform, and from this solution the mean density of dislocations and the stress field of the pile-up are determined.  相似文献   

2.
An exact asymptotic analysis is presented of the stress and deformation fields near the tip of a quasistatically advancing plane strain tensile crack in an elastic-ideally plastic solid. In contrast to previous approximate analyses, no assumptions which reduce the yield condition, a priori, to the form of constant in-plane principal shear stress near the crack tip are made, and the analysis is valid for general Poisson ratio ν. Specific results are given for ν = 0.3 and 0.5, the latter duplicating solutions in previous work by L.I. Slepyan, Y.-C. Gao and the present authors. The crack tip field is shown to divide into five angular sectors of four different types ; in the order in which these sweep across a point in the vicinity of the advancing crack, they are : two plastic sectors which can be described asymptotically (i.e., as r → 0, where r is distance from the crack tip) in slip-line terminology as ‘constant stress’ and ‘centered fan’ sectors, respectively ; a plastic sector of non-constant stress which cannot be described asymptotically in terms of slip lines; an elastic unloading sector; and a trailing plastic sector of the same type as that directly preceding the elastic sector. Further, these four different sector types constitute the full set of asymptotically possible solutions at the crack tip. As is known from prior work, the plastic strain accumulated by a material point passing through such a moving ‘centered fan’ sector is O(ln r) as r → 0 ; it is proved in the present work that the plastic strain accumulated by a material point passing through the ‘constant stress’ sector ahead of a growing crack must be less singular than In r as r → 0. As suggested also in earlier studies, the rate of increase of opening gap δ at a point currently at a distance r behind, but very near, the crack tip is given for crack advance under contained yielding by
δ? = αJ?σ0+β(σ0E)a? ln(Rr)
where a is crack length, σ0 is tensile yield strength, E is Young's modulus, J is the value of the J-integral taken in surrounding elastic material, and the parameters α and R are undetermined by the asymptotic analysis. The exact solution for ν = 0.3 gives β = 5.462, which agrees very closely with estimates obtained from finite element solutions. An approximate analysis based on use of slip line representations in all plastic sectors is outlined in the Appendix.  相似文献   

3.
A mathematical methodology for analysing pile-ups of large numbers of dislocations is described. As an example, the pile-up of n identical screw or edge dislocations in a single slip plane under the action of an external force in the direction of a locked dislocation in that plane is considered. As n→∞ there is a well-known formula for the number density of the dislocations, but this density is singular at the lock and it cannot predict the stress field there or the force on the lock. This poses the interesting analytical and numerical problem of matching a local discrete model near the lock to the continuum model further away.  相似文献   

4.
An array of continuously-distributed screw dislocations piled up against a circular cylindrical rigid inclusion is analyzed by the complex-variable method. Both uniformly applied shearing load at infinity and internal friction stress opposing the movement of dislocations are taken into account. The pile-up tip is away from the matrix-inclusion interface, its distance from the interface being determined by the condition that the stresses should be finite everywhere in the solid. Stress distributions on the interface are determined, and de-bonding of the interface, namely the formation of initial voids or cracks, is discussed. Stress and displacement near the tip of these initial voids are then analyzed. This analysis is combined with the virtual work argument of A.A. Griffith (1920) to yield a criterion for the initial voids to grow along the interface. The critical void-growth load is expressed by the sum of two terms, one proportional to the friction stress and the other inversely proportional to the square-root of the inclusion radius.  相似文献   

5.
This work deals with the influence of Kelvin-type viscoelastic interface on the generation of screw dislocations near the interfacial blunt crack tip in light of a pair of concentrated loads. The stress fields for dislocation and concentrated load have been obtained by using the integral transform and conformal mapping, the stress intensity factor have been studied, the image force acting on dislocation has been analyzed. The region rb where n screw dislocations are generated by a pair of concentrated loads and dislocation number are obtained by displacement compatibility and stress compatibility conditions of self-consistent and self-equilibrated systems. The results show that: the force acting on dislocation starts with the value that a perfectly bonded interface, then with relaxation of the imperfect interface; the shield effect for dislocation decreases as time goes by; in addition, with time elapsing, the influence of material shear modulus rate on shielding effect becomes weaker and weaker. The scale of multiplier α(rb/a) increases with relaxation of imperfect interface, the larger ratio of crack geometry c/a and the smaller ratio of shear modulus μ1/μ2 will lead the higher scale of multiplier. When μ1/μ2 = 1, the screw dislocations number first increases and then decreases with relaxation of imperfect interface, In addition, it possesses the highest value at t0 ≈ 1 and tends to vanish at t0 = ∞. When μ1 < μ2, the screw dislocations number increases with relaxation of imperfect interface. When μ1 > μ2, the screw dislocations number first increases then decreases with relaxation of imperfect interface, and possesses the highest value at t0 ≈ 1, the negative value are exclude from the discussion.  相似文献   

6.
We consider constitutive expressions which the stress σ(X, t) at a particle X at time t is given by σ (X, t) = F[F[X, τ)] where F[F(X, τ)] denotes a functional of the history of the deformation gradient matrix [F(X, τ)] from time τ = 0 unti τ = t. This expression is restricted by the requirement of invariance under a superposed rotation of the physical system and by the further requirement that the constitutive expression shall be invariant under the group of unimodular transformations, i.e. F[F(X, τ)] = F[F(X, τ) H] must hold for all matrices H such that det H - 1. We employ results from the classical theory of invariants in order to determine the general form of the expression F[F(X, τ)] which is consistent with these restrictions. Special cases are considered where the functional is replaced by a function of the strain, rate of strain, ? matrices. The case of shear flow is briefly discussed.  相似文献   

7.
Thermoelastic data are combined with an Airy stress function to determine the individual stresses on and near the boundary of a circular hole which is located below a concentrated edge-load in a plate. Coefficients of the stress function are evaluated from the measured temperatures and the local traction-free conditions are satisfied by imposing srr = trq = 0 {\sigma_{r{\rm{r}}}} = {\tau_{r\theta }} = 0 analytically on the edge of the hole. The latter has the advantage of reducing the number of coefficients in the stress function series. The method simultaneously smoothes the measured input data, satisfies the local boundary conditions and evaluates individual stresses on, and in the neighbourhood of, the edge of the hole. Attention is paid to how many coefficients to retain in the stress function series. Although the presence of high stress concentration factors, together with a hole-diameter-to-plate-thickness ratio of only two, result in some three-dimensional effects, these are relatively small and the agreement between the thermoelastic values, those from recorded strains and FEM-predicted surface stresses is good.  相似文献   

8.
Transitional stresses of a rectangular plate bent into the form of a circular cylinder have been derived in closed form. The effect of compressibility is presented graphically. The result indicate that for n (measure index)>1, the circumferential stress is maximum at the inner surface for an incompressible material and not for the compressible material, while for n= 1N,(N ? 1), it is found to be maximum at some inner point and not at the inner surface. The neutral surface alters with compressibility of the material and n.  相似文献   

9.
Analysis of the deformation field consistent with a Prandtl stress distribution travelling with an advancing plane-strain crack reveals the functional form of the near tip crack profile in an elastic-plastic solid. The crack opening δ is shown to have the form δ ~ r In (const./r) at a distance r from the tip. This observation coupled with data generated from finite element investigations of growing cracks in small-scale yielding permits the construction of a relation characterizing the deformation at an extending crack tip. A ductile crack-growth criterion consisting of the attainment of a critical opening at a small characteristic material distance from the tip is adopted. Predictions of the stability of a growing crack for both small-scale yielding specimens and those subject to general yielding are discussed.  相似文献   

10.
Steady-state quasi-static growth of a crack in the anti-plane shear mode through an elastic-plastic material is analyzed. The material is non-hardening and small-scale yielding conditions are assumed. The essential feature of the model is that the active plastic-zone is assumed to be a pair of discrete lines emanating from the crack tip out of the crack plane on which a suitable yield condition is satisfied. An exact solution is obtained for the plastic strain left in the wake of this active line plastic-zone. The extent of the plastic zone from the tip is determined to be 0.071 (kτ0)2 where k and τ0 are the remote elastic stress intensity factor and the shear flow stress, respectively, and it is found that 36% of the elastic energy flowing into the crack-tip region during growth is dissipated through plastic work and 64% is trapped as residual elastic energy in the plastic-zone wake.  相似文献   

11.
12.
13.
Properties of suspensions of spherical glass beads (25–38 μm dia.) in a Newtonian fluid and a non-Newtonian (NBS Fluid 40) fluid were measured at volume fractions, φ, of 0%, 10%, 20% and 30%. Measurements were made using a modified and computerized Weissenberg Rheogoniometer. Properties measured included steady shear viscosity, η(γ.), first normal stress difference, N1(γ.), linear viscoelastic properties, η′(ω) and G′(ω), shear stress relaxation, σ? (γ., t), and growth, σ+(γ., t) and normal stress relaxation, N1?(γ., t).For a the Newtonian fluid, increasing φ causes both η and η′ to increase, with η′ showing a slight frequency dependence. Both N1 and G′ are zero and stress relaxation and growth occur essentially instantaneously. For the NBS fluid, both η and η′ increse with φ at all γ. and ω, respectively, the increase being greater as γ. and ω approach zero. N1 and G′ are less affected by the presence of the particles than η and η′ with the effect on G′ being more pronounced than on N1. For fixed γ., stress relaxation and growth exhibit greater non-linear effects as φ is increased. A model for predicting a priori the linear viscoelastic properties for suspensions was found to yeild reasonable estimates up to φ = 20%.  相似文献   

14.
15.
Based on the work of Borisova, a more general method is proposed to determine the stress functions, from which the stress field is derived, of an edge dislocation pile-up and wall. For this purpose, Kröner’s theory of discrete dislocation in a continuum is applied to these two typical infinite and periodic configurations of edge dislocations. It is shown that the calculated stress functions can be used to easily determine the stress field of other configurations like screw dislocation pile-up or symmetrical tilt boundary.  相似文献   

16.
The non-linear equation RR? + 32R2 - AR?4 + B = 0 is shown to represent simply periodic motion with a minimum at R1 and a maximum at R1R0 or a maximum at R1 and a minimum at R1R0?1. R0 is a function of the ratio AB and is greater than 1 for AB > 1 and less than 1 for AB > 1. The period of the motion satisfies the simple relation T(R0?1) = R0?1T(R0). The exact solution to the above equation is represented in terms of elliptic integrals of the first and second kinds and a simple algebraic function.  相似文献   

17.
The present investigation is the study of the laminar hydromagnetic flow due to torsional oscillations of an infinite disk about a steady non-zero mean in an electrically conducting fluid. Separate solutions have been obtained for the limiting cases of low and high frequency oscillations. The low frequency solution is obtained by expressing the flow functions in powers (ik) while for high frequencies, the flow functions are expressed in powers of (ik)?12, where k =ωΩ being the ratio of the frequency of oscillations ω to the mean disk-angular velocity Ω and i2 = ?1. It is found that the oscillating part of the transverse shearing stress has a phase-lead while that of the radial shearing stress has a phase lag behind the disk oscillations. The phase-lead in the former case and phase-lag in the latter case decrease with the increase in the strength of the applied magnetic field.  相似文献   

18.
Experiments were performed using grain-orientated 312per cent silicon-iron. Plane-strain deformation can be obtained in thin plates of this material and, also, the plastic deformation that occurs can be revealed by etching. In some experiments the slot was extended while the specimen was under load and the plastic deformation was then observed. The distribution and density of the resulting slip-lines agrees qualitatively with J. R. Rice's (1968) model of the deformation at the tip of a crack growing in a continuum. In Rice's model, irreversible plastic deformation prevents complete focusing of the slip-lines at a crack tip; and in the present work an analogous effect was observed, the major difference being that in the present experiments the slip-lines are fixed by the crystal structure of the material. A qualitative explanation of the observations is given in terms of the interaction that exists between dislocations and a crack.  相似文献   

19.
20.
Spherical coordinates are r, θ, φ. The half-space extends in θ < π/2. The crack occurs along φ = 0. The region to be investigated is the solid space-triangle (or cone) between the three planes θ = π/2, φ = +0 and φ = 2π ? 0, which planes are to be taken stress-free.In this space-angle a state of stress is considered in terms of the cartesian stress components σxx = rλ?xx(λ, θ, φ); σxy = rλ(λ, θ, φ); etc. Possible values λ are determined from a characteristic (or eigenvalue) equation, expressing the condition that a determinant of infinite order is equal to zero. The root of λ which gives the most serious state of stress in the vertex region (the region r → 0) is the root closest to the limiting value Re λ > ?3/2. Knowledge of this state of stress, or at least of this value of λ is essential in the determination of the three-dimensional state of stress around a crack in a plate for distances of order of the plate thickenss.Along the front of the quarter-infinite crack (z-axis) the so called stress-intensity factor behaves like zλ+½ (z → 0) and thus tends to zero, respectively to infinity, accordingly to Re λ being >?½ or <?½. But in the region z → 0 the notion stress-intensity factor loses its meaning. The required state of stress passes into the well-known state of plane strain around a crack tip if Poisson's ratio (v) tends to zero. The computed state of stress for the incompressible medium (v = ½) is confirmed by experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号