首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A calcining at 300°C and sintering process were proposed to obtain a pure perovskite phase Pb(Fe1/2 Nb1/2)O3 from a 4PbO/Nb2O5/Fe2O3 mixture, which is calcined at 300°C for several days and sintered at various temperatures for 2h; the resultant powder was air quenched. The X-ray powder diffraction pattern of the sintered sample is carefully analyzed to identify intermediate phases. The effects of calcining at 300°C and sintering on obtaining PFN are based on the deformation of Pb5Fe4Nb4O21. A reaction mechanism for the calcining cycle of Pb(Fe1/2 Nb1/2)O3 is proposed.  相似文献   

2.
Iron-nickel mixed oxides containing up to 10 mole% of NiO have been prepared by hydroxide coprecipitation technique. The oxide samples have been heated to different temperatures ranging from 300 to 1300°C and studied by infrared spectroscopy, magnetic susceptibility, and X-ray diffraction measurements. The maximum solubility of NiO in Fe2O3 under the present experimental conditions is found to be 2 mole% when the samples are heated to 550°C. The solubility decreases with increase of sintering temperature and also as the total NiO content of the sample increases. Formation of nickel ferrite phase at concentrations higher than 2 mole% of NiO is clearly indicated.  相似文献   

3.
The polycrystalline solids TiO2Fe2O3, with iron contents in the range 0–10 at.%, prepared by coprecipitation and by impregnation, and treated in air at temperatures in the range 500–1000°C, have been studied by X-ray, ESR, and Mössbauer methods. The TiO2 in the samples treated at 800 and 1000°C always forms the rutile phase and the Fe3+ has a rather low solubility in it (~0.1 at.%). The Fe3+ in excess forms the antiferromagnetic pseudobrookite phase (Fe2TiO5). The samples treated at 500 and 650°C show a dependence on the preparation method. Those prepared by coprecipitation give at 500°C the pure anatase phase in which the Fe3+ has a higher solubility (≥ 1%); those prepared by impregnation give the anatase phase accompanied by a variable amount of rutile. The treatment at 650°C provokes the partial transformation of anatase to rutile and the complete development of the Fe2TiO5 phase. The relevance of these results to the photocatalytic properties shown by these solids for the photoreduction of dinitrogen to ammonia is discussed.  相似文献   

4.
We have studied LiFePO4/C nanocomposites prepared by sol-gel method using lauric acid as a surfactant and calcined at different temperatures between 600 and 900 °C. In addition to the major LiFePO4 phase, all the samples show a varying amount of in situ Fe2P impurity phase characterized by x-ray diffraction, magnetic measurements, and Mössbauer spectroscopy. The amount of Fe2P impurity phase increases with increasing calcination temperature. Of all the samples studied, the LiFePO4/C sample calcined at 700 °C which contains ~15 wt% Fe2P shows the least charge transfer resistance and a better electrochemical performance with a discharge capacity of 136 mA h g?1 at a rate of 1 C, 121 mA h g?1 at 10 C (~70 % of the theoretical capacity of LiFePO4), and excellent cycleability. Although further increase in the amount of Fe2P reduces the overall capacity, frequency-dependent Warburg impedance analyses show that all samples calcined at temperatures ≥700 °C have an order of magnitude higher Li+ diffusion coefficient (~1.3?×?10?13 cm2 s?1) compared to the one calcined at 600 °C, as well as the values reported in literature. This work suggests that controlling the reduction environment and the temperature during the synthesis process can be used to optimize the amount of conducting Fe2P for obtaining the best capacity for the high power batteries.  相似文献   

5.
The mechanism of nitrogenation of Sm2Fe17 was investigated with in-situ high temperature x-ray diffraction with Debye-Scherrer optic using a quartz capillary equipped with an additional buffer volume to supply sufficient nitrogen for the expected phase reaction. The formation of Sm2Fe17Nx with x ≈ 3 was observed at temperatures between 325?°C and 450?°C. During the phase transition period, taking 30–90 min at 450?°C and up to 300 min at 350?°C, two phases were observed simultaneously, a non-nitrided Sm2Fe17 phase and the already fully nitrided Sm2Fe17N3 phase. At 325?°C no single-phase material could be obtained during 300 min. The resulting lattice parameters measured after the complete nitrogenation are the same as those, obtained from the externally nitrogenized samples.  相似文献   

6.
The thermal decomposition of Prussian blue (iron(III) hexacyanoferrate) under inert atmosphere of argon was monitored by thermal analysis from room temperature up to 1000?°C. X-ray powder diffraction and 57Fe M?ssbauer spectroscopy were the techniques used for phase identification before and after sample heating. The decomposition reaction is based on a successive release of cyanide groups from the Prussian blue structure. Three principal stages were observed including dehydration, change of crystal structure of Prussian blue, and its decomposition. At 400?°C, a monoclinic Prussian blue analogue was identified, while at higher temperatures the formation of various polymorphs of iron carbides was observed, including an orthorhombic Fe2C. Increase in the temperature above 700?°C induced decomposition of primarily formed Fe7C3 and Fe2C iron carbides into cementite, metallic iron, and graphite. The overall decomposition reaction can be expressed as follows: Fe4[Fe(CN)6]3·4H2O????4Fe?+?Fe3C?+?7C?+?5(CN)2?+?4N2?+?4H2O.  相似文献   

7.
Commercially, iron (α-Fe) and hematite (α-Fe2O3) powders were used for the synthesis of composite powders of Fe2O3/Fe type by mechanical milling. Several ratios of Fe2O3/Fe were chosen for the composite synthesis; the atomic percent of oxygen in the starting mixtures ranged from 21 to 46 %. The Fe2O3/Fe composite samples with various Fe/O ratios were milled for different milling times. The milled composite samples were subjected to the heat treatments in argon up to 900 °C. During the heat treatment at temperatures that do not exceed 550 °C, Fe3O4/Fe composite particles are formed by the reaction between the Fe2O3 and Fe. Further increase of the heat treatment up to 700 °C leads to the reaction of the Fe3O4/Fe composite component phases, resulting thus in the formation of FeO/Fe composite. The heat treatment up to 900 °C of the Fe2O3/Fe leads to the formation of a composite of FeO/Fe3O4/Fe independent of the milling time and Fe2O3/Fe ratios. The onset temperatures of the Fe3O4 and FeO formations decrease upon increasing the milling time. Another important aspect is that, in the case of the same milling time but with a large amount of iron into the composite powder the formations temperatures of Fe3O4 and FeO are also decreasing. The influence of the mechanical activation time, heat treatment temperature, and Fe/O ratio on the formation of the (Fe3O4, FeO)/Fe composite from Fe2O3+Fe precursor mixtures was studied by differential scanning calorimetry and X-ray diffraction techniques.  相似文献   

8.
Nano-crystals of Li0.35Zn0.3Fe2.35O4 ferrite have been synthesized using citrate precursor method. The sample synthesized was sintered at different temperatures in order to vary their crystallite size. The average crystallite size was found in the range 24?C57?nm by varying the temperature from 300 to 1,100?°C. X-ray diffraction measurements confirmed the formation of cubic spinel structure at all the sintering temperatures in this work. The high frequency performance of the ferrite samples were estimated by measuring the frequency dispersion of the dielectric constant, dielectric loss and ac electrical conductivity. The dielectric constant has been observed to show normal behavior with frequency and decreases with the decrease in crystallite size. It is also observed that decrease in dielectric constant depends on sintering temperature because of lithium evaporation at higher temperature. A low value of dielectric constant and dielectric loss has been found, which makes them applicable for high frequency applications by decreasing the skin effect. The impedance spectroscopy technique has been used to study the effect of grain and grain boundary on the electrical properties of Li0.35Zn0.3Fe2.35O4 ferrite. The analysis of data shows only one semi-circle corresponding to the grain boundary volume suggesting that the conduction mechanism takes place predominantly through grain boundary volume in the prepared samples.  相似文献   

9.
A new iron basic salt, Fe4(OH)11NO3·2H2O, has been prepared by partially hydrolyzing a solution of Fe(NO3)3·9H2O with urea. The X-ray powder diffraction pattern has been indexed within a monoclinic cella=9.99(3) ?,b=9.48(2) ?,c=3.074(3) ? andβ=90.57(1)°. Thermal decomposition reactions in still air and nitrogen flow have been studied by DTA and TG analysis, and the intermediate and final products have been characterized by X-ray diffraction and IR spectroscopy. When this material is thermally decomposed in an X-ray high temperature diffraction chamber, pure iron is formed at 900 °C together with Fe(III) and Fe(II) oxides.
Zusammenfassung Mittels Hydrolyse einer L?sung von Fe(NO)3)3·9H2O mit Karbamid wurde das neue basische Eisensalz Fe4(OH)11NO3·2H2O dargestellt. Aus einem R?ntgenpulververfahren resultierena=9,55(3) ?,b=9,48(2) ?,c=3,074(3) ? undβ=90,57(1)° für eine monozyklische Zelle. Mittels DTA- und TG-Untersuchungen wurden die thermischen Zersetzungsreaktionen an Luft und im Stickstoffflu? untersucht und die Zwischen- und Endprodukte mit r?ntgendiffraktionsverfahren und IR-Spectroskopie charakterisiert. Bei einer thermischen Zersetzung dieses Stoffes in einer Hochtemperatur-r?ntgendiffraktionskammer wird bei 900 °C elementares Eisen zusammen mit Fe(II)- und Fe(III)-oxiden gebildet.

Резюме Частичным гидролизо м раствора соли Fe(NO3)3 · 9H2O с мочевиной получен а новая основная соль Fe4(OH)11NO3 · 2Н2О, для которой методо м порошкового рентген оструктурного анализа была установ лена моноклинная стр уктура с параметрами ячейкиа=9,55(3) А,b=9,48(2) ?,c=3,074(3) ? иβ=90,57(1)°. Термиче ское разложение соли изучено методом ДТА и ТГ в динамическо й атмосфере воздуха и азота, а образующиеся промеж уточные и конечные продукты ре акции были охарактер изованы рентгенофазовым ана лизом и ИК спектроскопией. ˉПри термическом разложе нии соли в высокотемпературно й рентгено-диффракци онной камере при 900° образует ся чистое железо вмес те с оксидами двух- и трехвалентного желе за.


The authors are greateful to Dr. R. M. Rojas for his helpful suggestions.  相似文献   

10.
Polycrystalline Co0.75Ni0.75[Fe(CN)6]?·?XH2O was prepared by coprecipitation. The coprecipitated powder was annealed in vacuum at 80°C, 100°C, and 130°C. Variation of microstructural and magnetic properties with different annealed temperatures was studied by Fourier-transform infrared, X-ray diffraction, and magnetization measurements. The differences in magnetic phase transition temperature, coercivity, remanence, and effective magnetization were studied in detail. The magnetic contribution mainly results from FeIII–CN–CoII/NiII and FeIII–NC–CoII/NiII because FeII–CN–CoIII/NiII carries no net spin. After annealing at 130°C, the microstructures FeIII–CN–CoII/NiII and FeIII–NC–CoII/NiII convert to FeII–CN–CoIII/NiII. Differences in magnetic properties may be attributed to heat-induced microstructural changes.  相似文献   

11.
This study deals with some microstructural and crystallographic aspects of the thermally induced transformation of goethite (α-FeOOH) into hematite (α-Fe2O3), occurring at about 300 °C. Powder specimens of goethite have been annealed in air at different temperatures, ranging from 200 °C up to 1,000 °C. The resulting products have been analyzed for a complete characterization of the changes brought about by the thermal treatments, using a multianalytical approach, based on: thermogravimetry, differential thermal analysis, transmission electron microscopy, Raman spectroscopy, and X-ray diffraction. At lower temperatures, the transition to hematite produces no important changes in size and shape of the original goethite grains. Recrystallization, and partial sintering, occurs only at temperatures in excess of 800 °C. The relevant evolution of pores present in both phases has been also considered, as it may provide important indications on the actual formation mechanism of hematite.  相似文献   

12.
The crystallization behaviour of amorphous melt spun Fe82?x?yCr18ZrxBy (x=0–8, y=10–20) ribbons have been investigated using differential scanning calorimetry. The crystallization temperature and crystallization behaviour change with varzing Zr and B content. The microstructural development during annealing of amorphous Fe64Cr18Zr8B10 has been investigated by a combination of transmission electron microscopy and energy dispersive X-ray microanalysis. Isothermal annealing for 2 h at temperatures in the range 600–1000°C produces a variety of different microstructures depending on the annealing temperature. At 600°C, the amorphous alloy partially crystallizes to a form a microstructure consisting of 9 nm sized bee ferrite grains embedded in an amorphous matrix. At temperatures in the range 700–900°C, the alloy microstructure transforms into a mixture of bee ferrite, faulted fcc MB12 boride particles and tetragonal M3B boride particles. At 1000°C, the faulted fcc MB12 boride particles are replaced by orthorhombic M4B boride particles.  相似文献   

13.
Samples of the composition of 10Fe2O3·10CaO·80SiO2 were prepared by the sol-gel method and heat-treated in different atmospheres. They were investigated by X-ray diffraction, scanning electron microscopy and Mössbauer spectroscopy. In the heat-treated samples in air iron is present up to 1000 °C in form of hematite and as Fe3+ in the tetrahedral sites. A wide range of hematite particle sizes was observed, the average size increased with heating temperature. At 1000 °C wollastonite was observed, at 1200 °C tridymite was formed and all the iron was incorporated in hematite. A heat-treatment at 500 °C under reducing conditions led to poorly crystallized maghemite and at 700 °C to metallic iron and fayalite formation.  相似文献   

14.
Carbonyl iron powder was coated with phosphate layer using phosphating precipitation method. The phosphated powder was dried at 60 °C for 2 h in air and heat treated by calcination at 400 and 800 °C for 3 h in air. Cylindrical specimens density of ~6.5 g.cm?3 based on iron phosphated powder calcined at 400 °C were sintered at 820, 900, 1110 °C in N2 + 10%H2 atmosphere and 1240 °C in vacuum for 30 min. The morphology and phase composition of the phosphate coating and sintered compacts were studied by scanning electron microscopy, atomic force microscopy (AFM) and X‐ray diffraction (XRD) analysis. Gelatinous morphology of dried phosphate coating (thickness of ~100 nm) containing nanoparticles of iron oxyhydroxides and hydrated iron phosphate was observed. From XRD, diffractogram indicated the presence of goethite α‐FeOOH, lepidocrocite γ‐FeOOH and ludlamite Fe3(PO4)2.4H2O. The calcined phosphate coating (thickness of ~ 400 nm) contained non‐homogeneous consistency of α‐Fe2O3 layer on iron particles, an inter‐layer of amorphous FePO4 and Fe3O4 top layer. The transformation to crystalline FePO4 structure occurred during calcination at 800 °C with the presence of α‐Fe2O3 forming a light top zone (rough morphology). The microstructure of compacts sintered in solid state at temperatures up to 900 °C has retained composite network character. A fundamental change in microstructure due to the liquid phase sintering occurred after sintering at temperatures of 1100 and 1240 °C. It was confirmed that the microstructure complex consists of spheroidized α‐Fe and α‐Fe2O3 phases surrounded by solidified liquid phase consisting various phosphate compounds. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
《Solid State Sciences》2001,3(4):495-502
The stability of yttrium silicate apatite has been investigated by studying the influence of iron as a “stabilising cation” and also by using different synthesis routes. The formation of apatite in samples has been followed by X-ray diffraction and by 29Si MAS NMR spectroscopy. The apatite phase appears to be stable at high temperatures (≈1700 °C) especially when heated in a nitrogen atmosphere; it can also occur in a metastable state when heated in air at lower temperatures; ≈1600 °C if prepared from a Y2O3SiO2 mixture or in the range 950 °C <T< 1150 °C if synthesised by the sol–gel process. Longer heat-treatments result in its decomposition into Y2Si2O7 and Y2SiO5. Iron appears to have two roles depending on the temperature; it stabilises the apatite phase at high temperatures when produced by the sol–gel route and catalyses the decomposition of sol–gel derived apatite at low temperatures.  相似文献   

16.
The composite/nanocomposite powders of Mn0.5Ni0.5Fe2O4/Fe type were synthesized starting from nanocrystalline Mn0.5Ni0.5Fe2O4 (D = 7 nm) (obtained by ceramic method and mechanical milling) and commercial Fe powders. The composites, Mn0.5Ni0.5Fe2O4/Fe, were milled for up to 120 min and subjected to heat treatment at 600 °C and 800 °C for 2 h. The manganese-nickel ferrite/iron composite samples were subjected to differential scanning calorimetry (DSC) up to 900 °C for thermal stability investigations. The composite component phases evolution during mechanical milling and heat treatments were investigated by X-ray diffraction technique. The present phases in Mn0.5Ni0.5Fe2O4/Fe composite are stable up to 400–450 °C. In the temperature range of 450-600 °C, the interdiffusion phenomena occurs leading to the formation of Fe1?xMnxFe2O4/Ni–Fe composite type. The new formed ferrite of Fe1?xMnxFe2O4 type presents an increased lattice parameter as a result of the substitution of nickel cations into the spinel structure by iron ones. Further increases of the temperature lead to the ferrite phase partial reduction and the formation of wustite-FeO type phase. The spinel structure presents incipient recrystallization phenomena after both heat treatments (600 °C and 800 °C). The mean crystallites size of the ferrite after heat treatment at 800 °C is about 75 nm. After DSC treatment at 900 °C, the composite material consists in Fe1?xMnxFe2O4, Ni structure, FeO, and (NiO)0.25(MnO)0.75 phases.  相似文献   

17.
Thermal oxidation of commercial ilmenite concentrate from Kahnouj titanium mines, Iran, at 500–950 °C was investigated for the first time. Fractional conversion was calculated from mass change of the samples during oxidation. Maximum FeO to Fe2O3 conversion of 98.63 % occurred at 900 °C after 120 min. Curve fit trials together with SEM line scan results indicated constant-size shrinking core model as the closest kinetic mechanism of the oxidation process. Below 750 °C, chemical reaction with activation energy of 80.65 kJ mol?1 and between 775 and 950 °C, ash diffusion with activation energy of 53.50 kJ mol?1 were the prevailing mechanisms. X-ray diffraction patterns approved presence of pseudobrookite, rutile, hematite, and Fe2O3·2TiO2 phases after oxidation of ilmenite concentrate at 950 °C.  相似文献   

18.
Phase equilibria being established in the solid state in the system V2O5?Fe8V10W16O85 were examined by X-ray phase powder diffraction and DTA. It has been found that the system of interest is a real two-component system with an eutectic temperature 620±5°C.  相似文献   

19.
Thin sol-gel hafnia films have been synthesised from HfCl4, the synthesis has revealed to be a simple route to fabrication of hafnia films with high transparency in the UV-visible range. The films have been fired at different temperatures in air up to 1000°C and have been characterized by X-ray diffraction and Fourier transform infrared spectroscopy. Infrared absorption spectra of hafnia films have allowed to follow the formation of monoclinic crystalline phases together with XRD. Formation of monoclinic hafnia crystallites has been observed upon calcination at temperatures higher than 600°C, as shown by infrared spectroscopy and XRD. The optical transmission and the refractive index as a function of the temperature of firing have been characterized by UV-Visible spectroscopy and spectroscopic ellipsometry. The hafnia films, after firing at 600°C, had a refractive index of 1.92 with a thickness of around 70 nm.  相似文献   

20.
The phase behavior of the AlIr system has been studied using differential thermal analysis, electron microprobe analysis, X-ray diffraction, chemical analysis and X-ray fluorescence. Our work confirms the existence of four compounds: Al9Ir2, Al3Ir, Al2.7Ir and AlIr. We also observed an additional intermetallic phase, with a stoichiometry corresponding to Al13Ir4; however, this compound exhibits a complex X-ray pattern and currently no structure has been determined.Peritectic temperatures were determined for Al9Ir2 (900 °C), Al13Ir4 (1015 °C) and Al3Ir (1450 °C). The Al2.7Ir phase is stable to above 1450 °C, and the congruent melting temperature of AlIr is 2120 ± 20 °C. The solubility of aluminum in iridium was measured between 1085 and 1850 °C, and the maximum solid solubility was extrapolated to 18 at.% at 2058 °C. The maximum solid solubility of iridium in aluminum was measured to be less than 0.1 at.%. A phase diagram for the AlIr system is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号