共查询到16条相似文献,搜索用时 0 毫秒
1.
2.
建立了超声萃取-气相色谱-质谱法测定海洋沉积物中39种多溴联苯醚残留的分析方法.样品用V(正己烷):V(二氯甲烷) =1:1混合溶液提取,超声(控制水浴温度为25 ℃)提取60 min,采用硅胶和氧化铝净化,负化学离子源-气相色谱-质谱法进行检测,39种组分图谱在49 min 内能得到很好的分离. 39种混合样品的检出限为0.003~0.10 μg/kg; 加标回收率为66.2%~118.6%;相对标准偏差为0.8%~18.2%.用于实际样品分析,结果令人满意. 相似文献
3.
4.
QuEChERS结合气相色谱-质谱法快速测定职业工人尿液中多溴联苯醚 总被引:1,自引:0,他引:1
建立了QuEChERS前处理结合气相色谱-质谱快速测定职业工人尿液中8种多溴联苯醚同系物的分析方法。尿液样在氯化钠和无水硫酸镁的脱水与盐析作用下以正己烷-丙酮混合液提取,采用C18去除提取液中的杂质,并采用气相色谱-负化学源质谱法在选择离子监测模式下测定,内标法定量。三至七溴联苯醚在1~100 pg/μL(十溴联苯醚为10~1 000 pg/μL)范围内线性关系良好,相关系数均大于0.999。待测物在3个加标水平下的平均回收率为91.7%~110.2%,相对标准偏差(RSD)小于10%。多溴联苯醚的检出限为0.3~36 pg/m L。该方法简单快速,灵敏度和选择性较高,适合职业工人体内污染物暴露水平监测。 相似文献
5.
6.
7.
8.
醇类化合物气相色谱保留指数的分子拓扑研究 总被引:35,自引:0,他引:35
分子中原子i的特征值(ti)定义为tj=1 ∑hi。并计算了醇类化合物的氢连接性指数,藉助多元线性回归技术分别建立了25个醇类化合物的指数与这些物质的气相色谱保留指数的定量结构/性质相关关系模型。模型具有良好的稳定性和预测能力,氢连接性指数能较好地反映化合物的结构特征。 相似文献
9.
10.
多氯代二苯并呋喃的结构信息连接性指数与其在不同柱上的气相保留行为的关系 总被引:37,自引:0,他引:37
在分子连接性指数的基础上 ,建立了化合物结构信息连接性指数 nχH(n =0 ,1,2 ,… ,m) ,即 nχH =∑(δiH·δjH·δkH·… ·δmH) -0 5,其中 1阶和 2阶结构信息连接性指数为 :1χH =∑(δiH·δjH) -0 5,2 χH =∑(δiH·δjH·δkH) -0 5,并计算了 135个多氯代二苯并呋喃分子的1χH 和2 χH 值。发现1χH 或2 χH 或1χH 和2 χH 与多氯代二苯并呋喃在不同柱上的气相保留指数 (RI)和相对保留时间 (RRT)有很好的相关性。各样本总体模型即定量结构 保留关系 (QSRR)相关模型的相关系数均在 0 96以上 ,且物理意义明确 ,计算简单. 相似文献
11.
12.
拓扑-量子指数醛酮气相色谱保留指数及沸点的定量构效关系 总被引:3,自引:0,他引:3
通过对醛酮化合物分子结构特征及其气相色谱保留指数(RI)和沸点与分子结构间关系的研究,提出了分子极化效应指数(MPEI)、奇偶指数(OEI)、立体效应指数(SVij)、顶点度-距离指数(VDI)及键连接矩阵特征根(∑X1CH)等拓扑-量子结构参数,用多元线性回归(MLR)方法获得了醛酮类化合物的沸点及其在不同极性色谱柱上的气相色谱保留指数与这些拓扑-量子指数间良好的定量结构-性质相关(QSPR)模型,相关系数均大于0.99。5个分子结构参数具有明确的物理化学意义且易于计算和运用。与文献研究的比较结果表明:由上述分子结构参数得出的模型方程适用于各类醛酮化合物的气相色谱保留指数及沸点的预测且具有较好的稳定性和准确性。 相似文献
13.
Qianqian Shen Wenwen Tao Yujie Guo Shijia Wang Yanfei Wang Ermei Zheng Zhongxiu Chen Kexian Chen 《Journal of separation science》2019,42(17):2771-2778
The harmful health effects caused by phthalic acid esters have been supported from the increasing scientific evidence, developing the efficient methodologies to monitor the levels of phthalic acid esters in various foods become especially important from the aspects of human exposure assessment and their migration mechanistic understanding. In this study, quantitative structure‐retention relationship studies on both the gas and liquid chromatographic retention times of 23 phthalic acid esters were performed by genetic function approximation, and the optimal quantitative structure‐retention relationship models (r2 > 0.980, r2CV > 0.960, and r2pred > 0.865) passed the statistical tests of cross‐validation, randomization, external prediction, Roy′ rm2 metrics, Golbraikh‐Tropsha′ criteria and applicability domain. The established predictive models elucidate the structural requirements for the retention of phthalic acid esters over different chromatographic columns, which were finally used to predict the retention times of 11 new phthalic acid esters. Hopefully, this work could provide useful guidelines for better understanding and accurate prediction of the retention behavior of undetermined phthalic acid esters when lacking standard samples or under poor experimental conditions, and make the simultaneous identification and quantification of numerous phthalic acid esters possible. 相似文献
14.
应用新定义的拓扑指数预测烷氧氯硅烷、单硫醚的气相色谱保留指数 总被引:15,自引:0,他引:15
根据分子中成键原子i的结构特征和所处的化学环境,新定义了原子i的价点价δi^Y,以价连接矩阵为基础构建了1个新的结构信息价连接性指数^mY。利用线性回归技术分别建立了22个烷氧氯硅烷、61个单硫醚化合物的^mY与这些物质的气相色谱保留指数RI的定量结构/保留相关关系模型(QSRR)。新模型物理意义明确,计算简便,对不同类型化合物在不同极性固定相上的气相色谱保留指数RI具有良好的稳定性和预测能力,新的结构信息价连接性指数能很好地反映化合物的结构特征。 相似文献
15.
The volatile compounds emitted from Mosla chinensis Maxim were analyzed by headspace solid‐phase microextraction (HS‐SPME) and headspace liquid‐phase microextraction (HS‐LPME) combined with gas chromatography‐mass spectrometry (GC‐MS). The main volatiles from Mosla chinensis Maxim were studied in this paper. It can be seen that 61 compounds were separated and identified. Forty‐nine volatile compounds were identified by SPME method, mainly including myrcene, α‐terpinene, p‐cymene, (E)‐ocimene, thymol, thymol acetate and (E)‐β‐farnesene. Forty‐five major volatile compounds were identified by LPME method, including α‐thujene, α‐pinene, camphene, butanoic acid, 2‐methylpropyl ester, myrcene, butanoic acid, butyl ester, α‐terpinene, p‐cymene, (E)‐ocimene, butane, 1,1‐dibutoxy‐, thymol, thymol acetate and (E)‐β‐farnesene. After analyzing the volatile compounds, multiple linear regression (MLR) method was used for building the regression model. Then the quantitative structure‐retention relationship (QSRR) model was validated by predictive‐ability test. The prediction results were in good agreement with the experimental values. The results demonstrated that headspace SPME‐GC‐MS and LPME‐GC‐MS are the simple, rapid and easy sample enrichment technique suitable for analysis of volatile compounds. This investigation provided an effective method for predicting the retention indices of new compounds even in the absence of the standard candidates. 相似文献