首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infrared spectra were obtained for 2,2-difluoropropyl chloride in the neat liquid, vapor, and solid states, and Raman spectra were obtained for the liquid. This compound exists as a mixture of trans and gauche rotamers in the vapor and liquid states, but only the trans form is present in the solid. Vibrational assignments were made for the two rotamers with the aid of zero-order normal coordinate calculations using force constants transferred from 2,2-difluoropropane and 1,1,1-trifluoroethyl chloride.  相似文献   

2.
Infrared spectra were obtained for n-butyl, n-pentyl, and n-hexyl fluorides in the liquid and solid states, and liquid-state Raman spectra were obtained for the first two of these. Normal coordinate calculations were carried out and twenty force constants of the C-CH2F group were refined to provide the best fit for the 114 assigned frequencies of trans-n-propyl, gauche-n-propyl, TT-n-butyl, and TG-n-butyl fluorides. The resulting force constants were used to calculate the frequencies of the GT- and GG conformations of n-butyl fluoride and the two conformations for each of n-pentyl and n-hexyl fluoride that have coplanar carbon chains. The presence of all four conformers of n-butyl fluoride in the liquid state is indicated, but only the TG-conformer is present in the solid. The existence of the two conformations of n-pentyl and n-hexyl fluorides for which calculations were made is supported by comparison of the observed and calculated frequencies. Additional conformations seem to be present. The simplest solid-state spectrum is due only to the conformer that has a coplanar chain of carbons and the fluorine atom in the gauche position. Previous tentative conclusions about the relation between C-F stretching frequency and configuration have been revised.  相似文献   

3.
The infrared (3200-30 cm(-1) spectra of gaseous and solid, the Raman spectra (3200-30 cm(-1)) of the liquid and solid vinyl silyl bromide, CH2CHSiH2Br, have been recorded. Additionally, quantitative depolarization values have been obtained. Both the gauche and cis conformers have been identified in the fluid phases but only the gauche conformer remains in the solid. Variable temperature studies from 0 to -87 degrees C of the Raman spectrum of the liquid was carried out. From these data, the enthalpy difference has been determined to be 22 +/- 6 cm(-1) (0.26 +/- 0.08 kJ/mol), with the gauche conformer being the more stable form. The predictions from the ab initio calculations up to MP2/6-311 + + G(2d,2p) basis set favor the gauche as the more stable form. A complete vibrational assignment is proposed for both the gauche and cis conformers based on infrared band contours, relative intensities, depolarization values and group frequencies. The vibrational assignments are supported by normal coordinate calculations utilizing the force constants from ab initio MP2/6-31G(d) calculations and the potential energy terms for the conformer interconversion have been obtained from the same calculations. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing a variety of basis sets up to 6-311 + + G(2d,2p) at levels of restricted Hartree-Fock (RHF) and/or Moller-Plesset (MP) to second order. The results are discussed and compared to those obtained for some similar molecules.  相似文献   

4.
The Raman spectra (3200-30 cm(-1)) of liquid and solid, and infrared spectra of gaseous and solid chloromethyl silyl dichloride, ClCH2SiHCl2, have been recorded. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data, the enthalpy difference was determined to be 363 +/- 40 cm(-1) (4.34 +/- 0.48 kJ mol(-1)), with the more stable form being the gauche conformer, which is consistent with the prediction from ab initio calculations at both the Hartree-Fock level and with full electron correlation by the perturbation method to second order. It is estimated that 92% of the sample is in the gauche form at ambient temperature. A complete vibrational assignment is proposed for the gauche conformer and several of fundamentals of the trans conformer based on infrared band contours, relative intensities, depolarization values, and group frequencies, which is supported by normal coordinate calculations utilizing the force constants from the ab initio MP2/6-31G(d) calculations. The r0 SiH bond distances of 1.476 and 1.472 A have been obtained for the trans and gauche conformers, respectively, from the silicon-hydrogen stretching frequencies. The optimized geometries have also been obtained from ab initio calculations utilizing several different basis sets with full electron correlation by the perturbation method up to MP2/6-311 + G(2d,2p). The results are discussed and compared to some corresponding results for several related molecules.  相似文献   

5.
The infrared spectra (3200 to 30 cm–1) of gaseous and solid chloroacetyl bromide, CH2ClC(O)Br, and the Raman spectra (3200 to 10 cm–1) of the gas, liquid (with depolarization data), and solid have been recorded. From the observed asymmetric torsional transitions, the potential function governing internal rotation of the CH2Cl moiety has been determined with the following coefficients:V 1=336±11,V 2=73±10,V 3=757+7,V 4=103±3, andV 6=5±2 cm–1. This potential function is consistent with s-trans to gauche and gauche to gauche barriers of 963±11 and 709±12cm–1, respectively, and enthalpy difference of 373 ± 24 cm–1 with the dihedral angle of the gauche rotamer being 115°. The enthalpy difference has been determined experimentally from the studies of the Raman spectra at different temperatures to be 359±68 cm–1 (1.03±0.19 kcal mol–1) and 507±24 cm–1 (1.45±0.07 kcal mol–1) for the gas and liquid, respectively, with the s-trans conformer being the more stable conformer in the gas and liquid and the only one present in the annealed solid. A complete assignment of the vibrational fundamentals is proposed from spectral data obtained for the gas, liquid, and solid. The assignment is supported by a normal coordinate calculation utilizing a modified valence force field to obtain the frequencies for the normal vibrations and the potential energy distribution. The results are discussed and compared to the corresponding quantities for some similar molecules.Taken in part from the thesis of H. V. Phan, which will be submitted to the Department of Chemistry in partial fulfillment of the Ph.D. degree.  相似文献   

6.
Infrared spectra of 3,3,3-trifluoropropyltrichlorosilane (CF3CH2CH2SiCl3) were obtained in the vapour, amorphous and crystalline solid phases in the range 4000-50 cm-1. Additional spectra in argon matrices at 5.0 K were recorded before and after annealing to 20-36 K. Raman spectra of the compound as a liquid were recorded at various temperatures between 298 and 210 K and spectra of the amorphous and crystalline solids were obtained. The spectra suggested the existence of two conformers (anti and gauche) in the fluid phases and in the matrix. When the vapour was shock-frozen on a cold finger at 80 K and subsequently annealed to 120-150 K, six weak or very weak Raman bands vanished in the crystal. Similar variations were observed in the corresponding infrared spectra after annealing and four very weak IR bands disappeared after crystallization. From intensity variations between 298 and 210 K of three Raman band pairs an average value Delta(conf)H degrees (gauche-anti)=6.1+/-0.5 kJmol-1 was obtained in the liquid. Annealing experiments indicate that the anti conformer also has a lower energy in the argon matrices. The conformational equilibrium is highly shifted towards anti in the liquid, and the low energy conformer also forms the crystal. The spectra of the abundant anti conformer and the few bands ascribed to the gauche conformer have been interpreted. Ab initio calculations at the HF/6-311G(**) and B3LYP/6-311G(**) gave optimized geometries, infrared and Raman intensities and vibrational frequencies for the anti and gauche conformers. The conformational energy differences derived were 11.8 and 9.2 kJmol-1 from the HF and the B3LYP calculations, respectively.  相似文献   

7.
Both conformers of n-butane are trapped from the gas phase in solid Ne at 4 K. Broad band infrared irradiation (mainly the CH-stretching region) induces interconversions, the quantum yield for the gauche — trans isomerization being approximately eight times higher than that for the reverse process. The energy difference between the conformers was found to be ?3.05 kJ mol?1. The vibrational spectra of both conformers are given.  相似文献   

8.
Infrared spectra (3500-50 cm(-1)) of gaseous and solid, and Raman spectrum (3500-30 cm(-1)) of liquid vinyldifluorosilane, CH(2)z.dbnd6;CHSiF(2)H, are reported. Both the cis and gauche rotamers have been identified in the fluid phases. From temperature-dependent FT-infrared spectra of krypton solutions, it is shown that the cis conformer is more stable than the gauche form by 119+/-12 cm(-1) (1.42+/-0.14 kJ mol(-1)). At ambient temperature there is 53+/-2% of the gauche conformer present. Complete vibrational assignments are provided for the cis conformer and several modes are identified for the gauche form. Harmonic force constants, fundamental frequencies, infrared intensities, and Raman activities have been obtained from MP2/6-31G(d) calculations with full electron correlation. The optimized geometries and conformational stabilities have also been obtained from ab initio MP2/6-31G(d), MP2/6-311+G(d,p), and MP2/6-311+G(2d,2p) calculations with full electron correlation as well as from density functional theory calculations (DFT) by the B3LYP method. The SiH bond distances (r(0)) of 1.472 and 1.471 A have been obtained for the cis and gauche conformers, respectively, from the silicon-hydrogen stretching frequencies. These results are compared to the corresponding quantities of the corresponding carbon analogue as well as with some similar molecules.  相似文献   

9.
Vibrational sum-frequency spectroscopy (VSFS) was used to study gauche defects in octadecylamine (ODA) monolayers at the air/water interface. The VSFS spectra provide unique insights into phase transitions that occur as a result of changes in the structure of the monolayer's hydrophobic region. These changes can be attributed to the increased presence of gauche conformers in the ODA alkyl chains during the monolayer's transition from the solid to liquid phase. Temperature-dependent spectra from monolayers at several different pressures were used to assign the phase transition temperature based on the observed changes in microscopic structure. Through application of a two-dimensional form of the Clapeyron equation, the first in situ measurements of the entropy and enthalpy changes associated with gauche conformers in a monolayer were made.  相似文献   

10.
Variable temperature (-60 to -100 degrees C) studies of the infrared spectra (3500-400 cm(-1)) of propionyl fluoride (CH3CH2CFO) and 2-methylpropionyl fluoride ((CH3)2CHCFO), dissolved in liquid xenon have been recorded. From these data, the enthalpy difference has been determined to be 329 +/- 33 cm(-1) (3.94 +/- 0.39 kJ/mol) for propionyl fluoride with the trans conformer (methyl group eclipsing the oxygen atom) more stable than the gauche form. For 2-methylpropionyl fluoride, the enthalpy difference has been determined to be 297 +/- 30 cm(-1) (3.55 +/- 0.36 kJ/mol) with the gauche conformer (methyl group eclipsing the oxygen atom) more stable than the trans form. From these DeltaH values along with assigned torsional fundamentals for both conformers and accompanying "hot bands" the potential functions governing the conformational interchange have been calculated. Utilizing the infrared data from the xenon solution and ab initio frequency predictions from MP2/6-31G* calculations, a few reassignments of the fundamentals have been made. Ab initio calculations have been carried out with several different basis sets up to MP2/6-311 + G** from which structural parameters and conformational stabilities have been determined. Additionally, force constants, infrared intensities, Raman activities, depolarization ratios, and scaled vibrational frequencies have been determined from MP2/6-31G* calculations. Adjusted structural parameters have been obtained from combined ab initio predicted values and previously reported microwave data. These parameters are compared to those obtained from either the earlier microwave and/or electron diffraction studies. Similar ab initio calculations and structural parameter determinations have been carried out for acetyl fluoride (CH3CFO) and trimethylacetyl fluoride ((CH3)3CCFO) and compared to the corresponding experimental results when appropriate.  相似文献   

11.
The infrared (3100-40 cm(-1)) and Raman (3100-20 cm(-1)) spectra of gaseous and solid n-propylsilane, CH(3)CH(2)CH(2)SiH(3) and the Si-d(3) isotopomer, CH(3)CH(2)CH(2)SiD(3), have been recorded. Additionally, the Raman spectra of the liquids have been recorded and qualitative depolarization values obtained. Both the anti and gauche conformers have been identified in the fluid phases but only the anti conformer remains in the solid. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of n-propylsilane dissolved in liquid krypton have been recorded and the enthalpy difference has been determined to be 220+/-22 cm(-1) (2.63+/-0.26 kJ mol(-1)) with the anti conformer the more stable form. A similar value of 234+/-23 cm(-1) (2.80+/-0.28 kJ mol(-1)) was obtained for deltaH for the Si-d(3) isotopomer. At ambient temperature it is estimated that there is 30+/-2% of the gauche conformer present. The potential function governing the conformation interchange has been estimated from the far infrared spectral data, the enthalpy difference, and the dihedral angle of the gauche conformer, which is compared to the one predicted from ab initio MP2/6-31G(d) calculations. The barriers to conformational interchange are: 942, 970 and 716 cm(-1) for the anti to gauche, gauche to gauche, and gauche to anti conformers, respectively. Relatively complete vibrational assignments are proposed for both the n-propylsilane-d(0) and Si-d(3) molecules based on the relative infrared and Raman spectral intensities, infrared band contours, depolarization ratios, and normal coordinate calculations. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities and depolarization ratios, and energy differences have been obtained for the anti and gauche conformers from ab initio MP2/6-31G(d) calculations. Structural parameters and energy differences have also been obtained utilizing the larger 6-311 + G(d,p) and 6-311 + G(2d,2p) basis sets. From the isolated Si-H stretching frequency from the Si-d(2) isotopomer the r(0) distances of 1.484 and 1.485 A have been determined for the SiH(s) and SiH(a) bonds, respectively, for the anti conformer, and 1.486 A for the SiH bond for the gauche conformer. Utilizing previously reported microwave rotational constants for the anti conformer and the determined SiH distances along with ab initio predicted parameters 'adjusted r(0)' parameters have been obtained for the anti conformer. The results are discussed and compared to those obtained for some similar molecules.  相似文献   

12.
Two-color resonant two-photon mass-analyzed threshold ionization (MATI) spectroscopy was used to record the vibrationally resolved cation spectra of the selected rotamers of p-n-propylphenol. The adiabatic ionization energies of the trans, gauche-A, and gauche-B rotamers are determined to be 65 283+/-5, 65 385+/-5, and 65 369+/-5 cm(-1), which are less than that of phenol by 3342, 3240, and 3256 cm(-1), respectively. This suggests that the n-propyl substitution causes a greater degree in lowering the energy level in the cationic than the neutral ground state. Analysis on the MATI spectra of the selected rotamers of p-n-propylphenol cation shows that the relative orientation of the p-n-alkyl group has little effect on the in-plane ring vibrations. However, the low-frequency C(3)H(7) bending vibrations appear to be active only for the two gauche forms of the cation.  相似文献   

13.
The infrared (3200-30 cm(-1) spectra of gaseous and solid and the Raman spectra of liquid (3200-30 cm(-1), with quantitative depolarization values, and solid vinyldichlorosilane, CH2=CHSiHCl2, have been recorded. Both the gauche and the cis conformers have been identified in the fluid phases. Variable temperature (105-150 degrees C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data the enthalpy difference has been determined to be 20 +/- 5 cm(-1) (235 +/- 59 J mol(-1) with the gauche conformer the more stable rotamer. It was not possible to obtain a single conformer in the solid even with repeated annealing of the sample. The experimental enthalpy difference is in agreement with the prediction from MP2/6-311 + G(2d,2p) ab initio calculations with full electron correlation. However, when smaller basis sets, i.e. 6-31G(d) and 6-311 + G(d,p) were utilized the cis conformer was predicted to be the more stable form. Complete vibrational assignments are proposed for both conformers based on infrared contours, relative infrared and Raman intensities, depolarization values and group frequencies, which are supported by normal coordinate calculations utilizing the force constants from ab initio MP2/6-31G(d) calculations. From the frequencies of the Si-H stretches, the Si-H bond distance of 1.474 A has been determined for both the gauche and the cis conformers. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing the 6-31G(d), 6-311 + G(d,p) and 6-311 + (2d,2p) basis sets at level of Hartree-Fock (RHF) and/or Moller Plesset to the second order (MP2) with full electron correlation. The potential energy terms for the conformer interconversion have been obtained from the MP2/6-31G(d) calculations. The results are discussed and compared with those obtained for some similar molecules.  相似文献   

14.
The infrared (3100-40 cm(-1)) spectra of gaseous and solid and Raman (3200-20 cm(-1)) spectra of liquid with qualitative depolarization values and solid n-propyltrifluorosilane, CH(3)CH(2)CH(2)SiF(3), have been recorded. Additionally the infrared spectra of the sample in nitrogen and argon matrices have been recorded. Both the anti and gauche conformers have been identified in the fluid phases but only the anti conformer remains in the solid. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of the sample dissolved in liquid krypton have been recorded and the enthalpy difference has been determined to be 135+/-14 cm(-1) (1.62+/-0.17 kJ mol(-1)) with the anti conformer the more stable form. At ambient temperature it is estimated that there is 51+/-2% of the gauche conformer present. Also the enthalpy difference in the liquid was obtained from variable temperature studies of the Raman spectra and from three conformer pairs an average value of 179+/-18 cm(-1) (2.14+/-0.22 kJ mol(-1)) was obtained again with the anti form the more stable conformer. Relatively complete vibrational assignments are proposed for both conformers based on the relative infrared and Raman spectral intensities, infrared band contours, depolarization ratios which are supported by normal coordinate calculations. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities, depolarization ratios, and energy differences have been obtained for the anti and gauche conformers from ab initio MP2/6-31G(d) calculations. Structural parameters and energy differences have also been obtained utilizing the larger 6-311+G(d, p) and 6-311+G(2d, 2p) basis sets. By utilizing the previously reported microwave rotational constants for five isotopomers of CH(3)SiF(3) along with ab initio predicted structural values, r(0) parameters have been obtained for methyltrifluorosilane. Similarly, from the ab initio predicted parameters "adjusted r(0)" parameters have been estimated for both conformers of n-propyltrifluorosilane. The results are discussed and compared with those obtained for some similar molecules.  相似文献   

15.
The infrared (3500-50 cm−1) and Raman (3500-20 cm−1) spectra of 1,2-pentadiene, H2C=C=C(H)CH2CH3 (ethyl allene), have been recorded for both the gaseous and solid states. Additionally, the Raman spectrum of the liquid has been obtained with qualitative depolarization values. In the fluid phases both the cis and gauche conformers have been identified, with the gauche rotamer being the predominant form although it may not be the conformer of lowest energy. In the solid state only the cis conformer remains after repeated annealing of the crystal. The asymmetric torsion of the cis conformer is observed as a series of Q-branch transitions beginning at 103.4 cm−1 and falling to lower frequency. An estimate of the potential function governing conformer interconversion is provided. A complete assignment of the normal modes for the cis conformer is given and several of the fundamentals are assigned for the gauche rotamer. Ab initio electronic structure calculations of energies, conformational geometries, vibrational frequencies, and potential energy functions have been made to complement and assist the interpretation of the infrared and Raman spectra. In particular, the transitions among torsional energy levels for both the symmetric (methyl) and asymmetric (ethyl) motions have been calculated. The results are compared to the corresponding quantities for some similar molecules.  相似文献   

16.
The IR spectra of the title compound as a solute in various solvents, as a melt and as a crystalline solid have been recorded. Raman spectra of the solutions, the melt and of the crystalline solid were obtained and semiquantitative polarization measurements carried out.The data have been interpreted in terms of one conformer (anti) present in the crystal. In the melt and in solutions an additional conformer (gauche) was present in low abundance, probably between 5 and 10%, and ΔHo (gauche → anti) was estimated to be −7.9 ± 2 kJ mol−1. Spectral correlations with the related molecule, 1,5-hexadiyne are pointed out.  相似文献   

17.
The infrared and Raman spectra of various flourinated ethylamines have been obtained for different phases. Emphasis has been put on the conformational behaviour in inert gas matrices. Some preliminary results for 2-fluoroethylamine and 2,2,2-trifluoroethylamine are given in the present communication. The two gauche conformers of 2-fluoroethylamine which are observed in the vapour phase are also present in the argon and nitrogen matrices. A conformational change, possibly to an anti conformer, is observed after a few hours in the argon matrix. For 2,2,2-trifluoroethylamine no conformational change is observed in the matrices.  相似文献   

18.
Variable temperature (-55 to -155 degrees C) infrared spectra of rare gas solutions of 2-chloro-3-fluoropropene, H2C=C(Cl)CH2F, have been recorded from 3500 to 400 cm(-1). The relative intensities of 16 conformer pairs at ten different temperatures of a krypton solution have been measured and from these data an enthalpy difference of 271+/-27 cm(-1) (3.17+/-0.32 kJ x mol(-1)) has been obtained with the cis conformer the more stable form. Similar studies were also carried out in xenon and an enthalpy difference of 334+/-33 cm(-1) (4.00+/-0.39 kJ x mol(-1)) was obtained again with the cis conformer the more stable form. It is estimated that there is 35+/-2% of the gauche conformer present at ambient temperature. However, in the crystalline solid the gauche conformer is the stable rotamer. Extensive ab initio calculations with full electron correlation by the perturbation method at the MP2 level with a variety of basis sets as well as density functional theory calculations (DFT) by the B3LYP method have been carried out. Several of these calculations predict an energy difference in the range of 400 cm(-1) with the cis form the more stable conformer but most of the predicted energy differences are significantly larger than the experimentally determined value. The spectroscopic and theoretical results are discussed and compared with the corresponding quantities for some similar molecules.  相似文献   

19.
The i.r. and Raman spectra of liquid dicyclopropyl ketone have been reinvestigated from 4000 to 200 cm−1 with higher resolution than previously obtained. In addition, the i.r. spectrum of the polycrystalline solid was recorded from 4000 to 400 cm−1. Contrary to published results, evidence has been obtained for a conformational equilibrium between the predominant cis—cis form and the gauche—gauche conformer.  相似文献   

20.
The microwave spectrum of gaseous 1-bromo-2-methoxyethane, BrCH2CH2OCH3, has been recorded from 18.0 to 27.0 GHz at low resolution. The Raman spectra of the gas, liquid, and solid along with the infrared spectra of the gas and solid have been recorded from 3500 to 50 cm–1. A comparison of the vibrational spectra obtained for the fluid phases with those obtained for the annealed solid indicates the presence of more than one conformer in the fluid phases. The presence of two asymmetric rotors allows for five possible conformations, a majority of which are present in the gaseous phase. It is concluded that the conformation present in the solid phase is that of the gauche/trans (GT) form, where the first term refers to the carbon-bromine bond and the second term to the carbon-oxygen bond (methoxy group). In the gas phase the major absorption in the microwave spectrum is a result of the trans/trans (TT) form although it is certain that other conformations are also present. From a variable temperature study of the Raman spectrum of the liquid, the enthalpy difference between the conformers of the—OCH3 group was found to be 850 ±115 cm–1 (2.43±0.33 kcal/mol) whereas the difference between the conformers of the—CH2Br group as found to be 510±24cm–1 (1.46±0.07 kcal/mol). The conformational energy differences, vibrational frequencies, and structural parameters have been obtained from ab initio calculations with the STO-3G* basis set, and these theoretical values are compared to the experimental values. All of these results are compared to similar data for some corresponding molecules.Taken in part from the thesis of R. A. Larsen which was submitted to the Department of Chemistry in partial fulfillment of the Ph.D. degree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号