首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Analyses of the stress and strain fields around smoothly-blunting crack tips in both non-hardening and hardening elastic-plastic materials, under contained plane-strain yielding and subject to mode I opening loads, have been carried out by use of a finite element method suitably formulated to admit large geometry changes. The results include the crack-tip shape and near-tip deformation field, and the crack-tip opening displacement has been related to a parameter of the applied load, the J-integral. The hydrostatic stresses near the crack tip are limited due to the lack of constraint on the blunted tip, limiting achievable stress levels except in a very small region around the crack tip in power-law hardening materials. The J-integral is found to be path-independent except very close to the crack tip in the region affected by the blunted tip. Models for fracture are discussed in the light of these results including one based on the growth of voids. The rate of void-growth near the tip in hardening materials seems to be little different from the rate in non-hardening ones when measured in terms of crack-tip opening displacement, which leads to a prediction of higher toughness in hardening materials. It is suggested that improvement of this model would follow from better understanding of void-void and void-crack coalescence and void nucleation, and some criteria and models for these effects are discussed. The implications of the finite element results for fracture criteria based on critical stress or strain, or both, is discussed with respect to transition of fracture mode and the angle of initial crack-growth. Localization of flow is discussed as a possible fracture model and as a model for void-crack coalescence.  相似文献   

2.
The isochromatic fringe patterns surrounding an intersonically propagating interface crack are developed and characterized using the recently developed stress field equations. A parametric investigation is conducted to study the influence of various parameters such as the crack-tip velocity and the contact coefficient on the isochromatic fringe patterns. It has been observed that the crack-tip velocity has a significant effect on the size and shape of isochromatic fringe patterns. The contact coefficient, on the other hand, does not affect the fringe pattern significantly. The paper also presents a numerical scheme to extract various parameters of interest such as the series coefficients of the stress field, the contact coefficient and the dissipation energy. The results show that the crack growth is highly unstable in the intersonic regime, and the energy dissipation decreases monotonically with increasing crack-tip velocity. The experimental data fit well with the recently proposed fracture criterion for intersonic interfacial fracture.  相似文献   

3.
Delayed fracture of a laminated composite under tensile loads applied at infinity is studied. The composite consists of alternating elastic and aging viscoelastic layers and contains an internal penny-shaped mode I macrocrack located in parallel to the layers. A modified Leonov–Panasyuk–Dugdale crack model and the critical crack-tip opening criterion constitute a fracture model. The subcritical crack growth equations are derived using the Volterra principle and the method of operator continued fractions. The laws governing delayed fracture are studied for a specific composite material  相似文献   

4.
When piezoelectric ceramics are subjected to mechanical and electrical load, they can fracture prematurely due to their brittle behavior. Hence, it is important to know the electro–elastic interaction and fracture behavior of piezoelectric materials. The problem of a through crack in a piezoelectric strip of finite thickness is studied in this paper. Fourier transforms are used to reduce the problem to the solution of singular integral equations. The model technique can solve for polarization in an arbitrary direction and material anisotropy. Numerical values of the crack-tip field amplification for a piezoelectric strip under in-plane electromechanical loading are obtained. Energy density factor criterion is applied to obtain the maximum of the minimum energy density and direction of crack initiation. The influence of crack length and crack position on stress intensity and energy density factors is discussed.  相似文献   

5.
裂纹面摩擦接触引起的断裂韧性增长的研究   总被引:4,自引:2,他引:2  
李永东  张男  唐立强  贾斌 《力学学报》2005,37(3):280-286
采用弹黏塑性的材料本构关系, 建立了压、剪混合型裂纹常速准静 态扩展的力学模型, 求得了裂纹面摩擦接触条件下裂纹尖端场的数值解, 并基于数 值结果讨论了扩展裂纹的摩擦效应. 计算和分析表明, 裂纹面的摩擦效应主要表现 在两个方面. 第一方面是摩擦会导致裂纹尖端区材料的断裂韧性增高, 并且裂纹面间的摩擦作用越强, 增韧效果越显著. 摩擦增韧的机制可以解释为裂纹 面间的摩擦作用导致裂纹尖端塑性区尺寸变大, 使裂纹尖端场的塑性变形能增加, 从而使得裂纹尖端区材料增韧. 摩擦生热并不是导致材料断裂韧性增长的根本机制. 第二方面是摩擦会导致``断裂延缓'. 利用裂纹面的摩擦来提高构件的承载能力和延长构件的服役寿命具有较大的工程实用价值.  相似文献   

6.
Fracture in rocks is influenced by anisotropy and existence of faults. Fracture initiation and propagation is often under the combined presence of sliding and opening of preexisting cracks. Linear-elastic fracture-mechanics (LEFM) has been used as a model for describing the propagation of a main crack in materials such as rocks, concrete, ceramics, etc. However, the presence of the fracture process zone which includes interlocking of grains and ligament connections results in deviations from perfectly brittle behavior. These effects are more pronounced in mixed-mode fracture, which involves crack initiation under the combined presence of tension-shear or compression-shear stresses.Specimens of Indiana limestone with a preexisting inclined notch were studied to observe the fracture process under a mixed-mode state of stress. Experimental monitoring involved using the electronic speckle-pattern interferometry (ESPI) technique to monitor strains and crack-propagation paths with high sensitivity. A scanning electron microscope (SEM) was used to examine the specimen for the presence of microcracks. Experimental results were subsequently evaluated using a mixed-mode fracture theory and finite-element computations.It was possible to visually observe the pre-peak and post-peak development of the fracture process zone. Developments in the crack-tip strain concentration were observed at and beyong the peak load. While the experiments conducted involved tension-shear cracks, the possibility of extending the concepts to compression-shear cracks was also explored. The possibilities and limitations of using the fracture-mechanics approach to understanding fracture in rocks were subsequently discussed.Paper was presented at the 1991 SEM Spring Conference on Experimental Mechanics held in Milwaukee, WI on June 9–13.  相似文献   

7.
The hybrid time-domain boundary element method, together with the multi-region technique, is applied to simulate the dynamic process of propagation and/or kinking of an interface crack in a two-dimensional bi-material. The whole bi-material is divided into two regions along the interface. The traditional displacement boundary integral equations are employed with respect to each region. However, when the crack kinks into the matrix material, the non-hypersingular traction boundary integral equations are used with respect to the part of the crack in the matrix. Crack propagation along the interface is numerically modelled by releasing the nodes in the front of the moving crack-tip controlled by the fracture criterion. Kinking of the interface crack is controlled by a criterion developed from the quasi-static one. Once the crack kinks into the matrix, its propagation is modeled by adding new elements of constant length to the moving crack-tip controlled by a criterion extended from the quasi-static maximum circumferential stress. The numerical results of the crack growth trajectory for different material combinations are computed and compared with the corresponding experimental results. Good agreement between numerical and experimental results implies that the present boundary element numerical method can provide an excellent simulation for the dynamic propagation and deflection of an interface crack.  相似文献   

8.
The stress intensity factor of a half-plane crack extending non-uniformly in an isotropic elastic solid subjected to stress wave loading is determined. A plane stress pulse strikes the crack at time t = 0, the wavefront being parallel to the plane of the crack. At some arbitrary later time t = τ, the crack begins to extend at a non-uniform rate. It is found that the stress intensity factor is a universal function of instantaneous crack-tip velocity times the stress intensity factor for an equivalent stationary crack. An energy rate balance fracture criterion is applied to obtain an equation of motion for the crack tip. The delay time between the arrival of the incident pulse and the onset of fracture is also calculated for this fracture criterion.  相似文献   

9.
The effects of the T-stress on Yoffe crack propagation are analyzed. Using a maximum kI fracture criterion near the kink of a moving crack tip, a branch angle is determined via asymptotic crack-tip field containing two fracture parameters related to singular and constant terms. Results indicate that crack speeds decrease the T-stress. The crack-tip field and the branch angle depend on the T-stress, especially for higher crack velocities. The critical speed for crack bifurcation is independent of remote transverse loading if neglecting the T-stress. Otherwise, the crack branch speed is reduced or raised, depending on positive or negative transverse loading, respectively.  相似文献   

10.
The effect of the mesh geometry on the accuracy of solutions obtained by the finite-element method for problems of linear fracture mechanics is investigated. The guidelines have been formulated for constructing an optimum mesh for several routine problems involving elements with linear and quadratic approximation of displacements. The accuracy of finite-element solutions is estimated based on the degree of the difference between the calculated stress-intensity factor (SIF) and its value obtained analytically. In problems of hydrofracturing of oil-bearing formation, the pump-in pressure of injected water produces a distributed load on crack flanks as opposed to standard fracture mechanics problems that have analytical solutions, where a load is applied to the external boundaries of the computational region and the cracks themselves are kept free from stresses. Some model pressure profiles, as well as pressure profiles taken from real hydrodynamic computations, have been considered. Computer models of cracks with allowance for the pre-stressed state, fracture toughness, and elastic properties of materials are developed in the MSC.Marc 2012 finite-element analysis software. The Irwin force criterion is used as a criterion of brittle fracture and the SIFs are computed using the Cherepanov–Rice invariant J-integral. The process of crack propagation in a linearly elastic isotropic body is described in terms of the elastic energy release rate G and modeled using the VCCT (Virtual Crack Closure Technique) approach. It has been found that the solution accuracy is sensitive to the mesh configuration. Several parameters that are decisive in constructing effective finite-element meshes, namely, the minimum element size, the distance between mesh nodes in the vicinity of a crack tip, and the ratio of the height of an element to its length, have been established. It has been shown that a mesh that consists of only small elements does not improve the accuracy of the solution.  相似文献   

11.
The symmetric-Galerkin boundary element method (SGBEM) has previously been employed to model 2-D crack growth in particulate composites under quasi-static loading conditions. In this paper, an initial attempt is made in extending the simulation technique to analyze the interaction between a growing crack and clusters of perfectly bonded particles in a brittle matrix under cyclic loading conditions. To this end, linear elastic fracture mechanics and no hysteresis are assumed. Of particular interest is the role clusters of inclusions play on the fatigue life of particulate composites. The simulations employ a fatigue crack growth prediction tool based upon the SGBEM for multiregions, a modified quarter-point crack-tip element, the displacement correlation technique for evaluating stress intensity factors, a Paris law for fatigue crack growth rates, and the maximum principal stress criterion for crack-growth direction. The numerical results suggest that this fatigue crack growth prediction tool is as robust as the quasi-static crack growth prediction tool previously developed. The simulations also show a complex interplay between a propagating crack and an inclusion cluster of different densities when it comes to predicting the fatigue life of particulate composites with various volume fractions.  相似文献   

12.
A directional crack growth criterion in a compressed elastic perfectly plastic material is considered. The conditions at the crack-tip are evaluated for a straight stationary crack with a small incipient kink. Remote load is a combined hydrostatic pressure and pure shear applied via a boundary layer. Crack surfaces in contact are assumed to develop homogenous Coulomb friction.The crack opening displacement of an extended kink is examined in a finite element analysis to judge the risk of opening mode failure. It has been found that the direction that maximizes the crack opening displacement of an extended kink tip coincides very well with a prediction of the crack growth direction obtained by using a criterion for continued crack growth direction discussed by the authors elsewhere [Int. J. Fract. 108 (2001) 351].Moreover, the by the model predicted incipient crack growth directions are qualitatively comparable with reported crack paths obtained in ductile materials in a limited number of experiments performed under a combined load of in-plane shear and compression.  相似文献   

13.
The influence of the mismatch of the lattice orientation on the deformation and stress fields of a crack located on the grain boundary is studied by means of the finite-element analysis taking account of finite deformatio and finite lattice rotation. The plane strain calculations for an fcc crystal subjected to mode I loading are performed on the basis of the crystalline plasticity described by a planar three-slip model. For the crack-tip shapes and the dominant deformation modes on slip systems, results of all the cases analysed here are in qualitative agreement with the earlier analytical and numerical solutions. Our results indicate that the lattice orientation difference may greatly influence the shear stress along the grain boundary which is related to grain-boundary sliding, while the normal stress along the grain boundary, which may induce cleavage fracture, is virtually insensitive to it. The influence of the lattice orientations on the crack-tip fields is also investigated under small-scale-yielding conditions and the comparison with the results of finite deformation is made.  相似文献   

14.
A new approach for the analysis of crack propagation in brittle materials is proposed, which is based on a combination of fracture mechanics and continuum damage mechanics within the context of the finite element method. The approach combines the accuracy of singular crack-tip elements from fracture mechanics theories with the flexibility of crack representation by softening zones in damage mechanics formulations. A super element is constructed in which the typical elements are joined together. The crack propagation is decided on either of two fracture criteria; one criterion is based on the energy release rate or the J-integral, the other on the largest principal stress in the crack-tip region. Contrary to many damage mechanics methods, the combined fracture⧹damage approach is not sensitive to variations in the finite element division. Applications to situations of mixed-mode crack propagation in both two- and three-dimensional problems reveal that the calculated crack paths are independent of the element size and the element orientation and are accurate within one element from the theoretical (curvilinear) crack paths.  相似文献   

15.
The macroscopic pre-cracked line scratch test (MPLST), in which a debonded edge of a film is loaded in in-plane compression, has been modeled as a generic, coupled fracture–buckle problem using simple beam theory. Near crack-tip beam rotation (also called root rotation in literature), which always exists due to the eccentric loading in this type of test, has been incorporated into the governing equations. An analytical solution to the augmented problem has been derived. It is found that the near-tip rotation can introduce pre-buckle bending in the film. One important consequence of this pre-buckle bending is that it leads to the reduction of the critical buckling condition. This agrees well with the results of [Int. J. Fract. 113 (2002) 39] obtained by solving the full elastic field near the crack-tip. Furthermore, the pre-buckle bending moment at crack-tip remains negative (leading to crack closure) as long as the pre-buckle crack length is small, but it becomes positive (leading to crack opening) at larger pre-buckle crack length. The negative bending moment causes the crack-tip energy release rate to decrease as the crack propagates, which results in a stable pre-buckle crack growth. Once it becomes positive, however, the bending moment causes crack-tip energy release rate to increase rapidly as crack length increases and hence leads to an unstable (pre-buckle) crack growth. Further, the nominal phase angle is initially larger than the classic prediction of 52.1° owing to the existence of the negative crack-tip bending moment, but it drops quickly upon approaching the buckle point. All these results are confirmed by a rigorous 2D FEM calculation using cohesive zone modeling (CZM) approach. Finally the derived analytical solution has been used to analyze a set of PLST data reported in the literature. It has been demonstrated that plasticity in the adhesive layer and in the bonded film is responsible for the strong R-curve toughening characteristics in the deduced interface toughness data. It has also been shown that, once the deduced interface toughness is incorporated into a CZM simulation, both the axial loading and buckling point can be accurately predicted.  相似文献   

16.
We develop a general solution method for a dynamically accelerating crack under anti-plane shear conditions along the interface between two different homogeneous isotropic elastic materials. The crack is initially at rest, and after loading is applied the crack-tip speed which may accelerate up to the shear wave speed of the more compliant material. The analysis includes an exact, closed-form expression for the stress intensity factor for an arbitrary time-dependent crack-face traction, as well as expressions for computing the crack-face displacements and the stress in front of the crack. We also present some numerical examples for fixed loads and for loads moving with the crack tip, using a stress intensity factor fracture criterion, in order to examine the predicted effect of material mismatch on interfacial fracture.  相似文献   

17.
断裂力学判据的评述   总被引:5,自引:1,他引:4  
嵇醒 《力学学报》2016,48(4):741-753
从Inglis 和Griffith 的著名论文到Irwin 和Rice 等的奠基性贡献,对断裂力学中的线弹性断裂力学的K判据,界面断裂力学的G判据,和弹塑性断裂力学的J 判据作了扼要的综述. 介绍了在界面断裂力学G判据的基础上提出的界面断裂力学的K判据,以说明断裂力学的判据存在改进的可能性. 在综述中归纳出断裂力学判据中目前还没有较好解决的几个问题. 在总结以往断裂力学研究经验的基础上,指出裂纹端应力奇异性的源是对断裂力学判据存在的问题作进一步研究的切入点. 探讨了裂纹端应变间断的奇点是裂纹端应力奇异性的源的问题,从而对裂纹端应力强度因子的物理意义进行了讨论. 最后,阐述了进行可靠的裂纹端应力场的弹塑性分析是改进弹塑性断裂力学判据的关键,而进行可靠的裂纹端应力场的弹塑性分析的前提是要通过裂纹端应力奇异性的源的研究来获得作用在裂纹端的造成裂纹端应变间断的有限值应力.   相似文献   

18.
The effect of transverse shear on delamination in layered, isotropic, linear-elastic materials has been determined. In contrast to the effects of an axial load or a bending moment on the energy-release rate for delamination, the effects of shear depend on the details of the deformation in the crack-tip region. It therefore does not appear to be possible to deduce rigorous expressions for the shear component of the energy-release rate based on steady-state energy arguments or on any type of modified beam theory. The expressions for the shear component of the energy-release rate presented in this work have been obtained using finite-element approaches. By combining these results with earlier expressions for the bending-moment and axial-force components of the energy-release rates, the framework for analyzing delamination in this type of geometry has been extended to the completely general case of any arbitrary loading. The relationship between the effects of shear and other fracture phenomena such as crack-tip rotations, elastic foundations and cohesive zones are discussed in the final sections of this paper.  相似文献   

19.
There have been a number of recent papers by various authors addressing static fracture in the setting of the linearized theory of elasticity in the bulk augmented by a model for surface mechanics on fracture surfaces with the goal of developing a fracture theory in which stresses and strains remain bounded at crack-tips without recourse to the introduction of a crack-tip cohesive-zone or process-zone. In this context, surface mechanics refers to viewing interfaces separating distinct material phases as dividing surfaces, in the sense of Gibbs, endowed with excess physical properties such as internal energy, entropy and stress. One model for the mechanics of fracture surfaces that has received much recent attention is based upon the Gurtin-Murdoch surface elasticity model. However, it has been shown recently that while this model removes the strong (square-root) crack-tip stress/strain singularity, it replaces it with a weak (logarithmic) one. A simpler model for surface stress assumes that the surface stress tensor is Eulerian, consisting only of surface tension. If surface tension is assumed to be a material constant and the classical fracture boundary condition is replaced by the jump momentum balance relations on crack surfaces, it has been shown that the classical strong (square-root) crack-tip stress/strain singularity is removed and replaced by a weak, logarithmic singularity. If, in addition, surface tension is assumed to have a (linearized) dependence upon the crack-surface mean-curvature, it has been shown for pure mode I (opening mode), the logarithmic stress/strain singularity is removed leaving bounded crack-tip stresses and strains. However, it has been shown that curvature-dependent surface tension is insufficient for removing the logarithmic singularity for mixed mode (mode I, mode II) cracks. The purpose of this note is to demonstrate that a simple modification of the curvature-dependent surface tension model leads to bounded crack-tip stresses and strains under mixed mode I and mode II loading.  相似文献   

20.
Finite deformation in the crack-tip zone of plastic deformation is investigated for Mode-I opening of a crack in a thin sheet of elasto-plastic material. The material obeys the von Mises yield criterion in the true stresses, and the stretching tensor satisfies a flow law of the Prandtl-Reuss type. Incompressibility and a state of generalized plane stress are assumed. It is assumed that linearized elasticity applies outside the zone of plastic deformation. On the crack-line between the crack-tip and the elastic—plastic boundary, two distinct regions have been recognized: the near-tip zone and the intermediate region. In the near-tip zone the fields are controlled by the radius of curvature of the blunted crack-tip. Here the stress field has been approximated by classical plane stress results. It has been assumed that the crack-line stresses may be taken as uniform in the intermediate region. In each region, deformation variables have been determined by the use of the constitutive relations, and the results have been matched to the corresponding quantities in the neighboring region(s). In this manner expressions have been constructed for the deformation gradients on the crack-line, in terms of the distance to the crack-tip in the deformed configuration, the yield stress in shear, and the stress intensity factor of linear elastic fracture mechanics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号