首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly epitaxial Ba0.6Sr0.4TiO3 (BST) ferroelectric thin films were fabricated on (001) MgOsubstrates by pulsed laser deposition. The nonlinear optical absorption coefficients (β) and refraction indices (γ) of the BST thin films on (001) MgO substrates were investigated using the single beam Z-scan technique with femtosecond laser pulses at the wavelengths of 790 nm and 395 nm, respectively, at room temperature. The nonlinear absorption coefficients of BST thin films were measured to be ∼0.087 cm/GW and ∼0.77 cm/GW at 790 nm and 395 nm, respectively. The nonlinear refraction indices of BST thin films exhibit a strong dispersion from a positive value of 6.1×10-5 cm2/GW at 790 nm to a negative value of -4.0×10-5 cm2/GW at 395 nm near band gap. The dispersion of γ is roughly consistent with Sheik-Bahae’s theory for the bound electronic nonlinear refraction resulting from the two-photon resonance. These results show that the BST film is a promising material as a candidate for nonlinear optical applications. PACS 42.70.Mp; 78.20.-e; 81.05.-t  相似文献   

2.
Intensities and nitrogen-broadened half-widths of lines R(0), R(8) and R(16) in the fundamental band of 12C16O have been measured at 83°K, 100°K, 150°K, 200°K and 298°K. The intensities of several other lines in the P- and R-branches of the band have also been measured at 298°K. The absolute intensity derived from the line intensity data using the Herman-Wallis formula is S°v = 273 ± 10 cm-2atm-1 at S.T.P. A separate measurement employing the Wilson-Wells-Penner-Weber method has yielded S°v = 277 ± 4 cm-2 atm-1 at S.T.P. Both of these values are within 6 per cent of most of the previously published direct measurements of this parameter. The values for the line intensities reported earlier by other authors are lower by nearly 16 per cent.  相似文献   

3.
Reflectivity of HgSe (N = 2.0 × 1018-4.2 × 1017 cm-3) was measured in the spectral region from 2–100 μm at temperatures between 95 and 300 K. The frequency of the transverse optical phonon ωt = 132 ± 2 cm-1 was determined from Kramers-Kronig analysis. The ω+ mode of the plasmon-LO phonon coupled modes is shown to depend anomalously on temperature. Two extra bands of unknown origin were also observed at about 110 and 120 cm-1.  相似文献   

4.
The conductivity mechanism in pure and doped, β-rhombohedral, polycrystalline boron between 1.5 °K and 900 °K is clarified by measurements of electrical conductivity, photoconductivity, electron paramagnetic resonance and thermoelectric effect. The semiconductor behaviour of boron between 1.5 and 900 °K is similar to that of doped and compensated germanium and silicon at helium temperatures concerning the temperature-independent number of carriers and the thermally activated conduction process at low and high carrier concentrations. The paramagnetic centres are nearly localized electrons at 1.5 °K and nearly free electrons at 900 °K with a continuous transition between these two extreme kinds of behaviour. Mobilities of charge carriers in carbon doped boron over a range from 1016 cm?3 to 1020 cm?3 and 77 °K to 900 °K were measured for the first time and were found to obey an exponential law.  相似文献   

5.
The absolute intensities of all the J-multiplets between R(13) at 1375cm-1 and P(12) at 1225 cm-1, in the v4-fundamental of 12CH4, have been measured at 300°K. Our values are consistent with published band-intensity measurements and also with the theoretical line strength tabulation by Fox. Spectral transmittance computation using a Lorentz line shape with a hydrogen-broadened half-width of 0.075 cm-1 atm-1 at 300°K for all the lines in the band is in excellent agreement with our experimental data measured with a spectral resolution of 0.2 cm-1. Our best estimate for the absolute intensity of the band is 145±8 cm-2 atm-1 at STP.  相似文献   

6.
The absolute intensity of a vacuum sliding spark (length 2–10 cm, half cycle 0,8 μsec) has been measured in the spectral region between 0,4 and 3μ. From the long wavelength radiation emitted from an optically thick layer, one gets the temperature, from the short wavelength radiation emitted from an optically thin layer, one obtains the density. Using polyethylene as an insulator we reached a temperature of 4·105 °K at electron densities of 8·1018 cm?3 and current densities of 1.2·106 A/cm2. The temporal development of temperature and density has been determined. The maximum intensity at λ=0.43 μ was found to be 5·104 (7·1010 W/cm3 ster) as large as that of the positive crater of a properly driven carbon arc. At λ=3 μ this same parameter turned out to be 300 times as large (5·107 W/cm3 ster).  相似文献   

7.
Integrated intensities of acetylene bands at 3·04, 7·53 and 13·7 μm have been measured at 300°K using the Wilson-Wells-Penner-Weber technique and a spectral resolution of 0·6 cm?1. Our best estimates of the intensities are 294 ± 6 cm?2atm?1 for the 3·04 μ bands, 87 ± 2 cm?2atm?1forthe 7·53 μband and 729 ± 28 cm?2atm?1 for the 13·7 μ band at 300°K.  相似文献   

8.
Raman spectra of antiferromagnetic thallium cobaltous fluoride have been obtained with 4579A argon ion laser excitation at temperatures from 4°K to TN = 94 ± 2°K. The features observed consist of six Co2+ excitons ranging in energy from 325 to 1070 cm-1, at two-magnon peak with low-temperature energy of 315 cm-1, and a one-magnon feature whose 4°K energy is 37 cm-1. The energy and linewidth of the one-magnon scattering has been measured from 4°K to about 0.8 TN; it is found that the magnon becomes critically damped at about 0.8 TN, in good agreement with our previous observations on RbCoF3. The Co2+ excitons observed at 325, 380, 410, 730 (weak), 960, and 1070 cm-1 agree in energy quite well with the KCoF3 levels calculated by Buyers, Holden et al. as 340, 400, 467, 767, 967 and 1050 cm-1.  相似文献   

9.
New results have been obtained on absorption spectra of synthetic CoCO3 single crystal in the spectral range from the 11,500 to 34,500 cm-1. Some vibration frequencies of the (CO3)2- ions have deduced from the absorption spectrum and zero-phonon lines have been identified. In the regions 22,900 and 24,500 cm-1, a shift is observed of absorption frequencies with antiferromagnetic order for temperatures increasing from 4.2 to 20°K.  相似文献   

10.
The recoilless fractions of 182W, 184 W, and 186W have been simultaneously measured from 30°K to 100°K in 10°K steps. They are found to agree with previous calculations of Raj and Puri.  相似文献   

11.
Experimental and theoretical investigations have been performed to determine the thermal conductivity of hydrogen in the temperature range between 2000 and 7000 °K. For this purpose the radial temperature distributions for various currents and theE-I-characteristic of a low current wall-stabilized hydrogen arc have been measured. In the dark region of the arc outside the bright core the temperature and the thermal conductivity between 2000 and 4500 °K were found by means of the schlieren technique. The electron temperature in the core of the arc results from spectroscopic measurements. The gas temperature has been calculated with a formula, derived from the kinetic theory of gases. Assuming a constant collision integralQ eH 11 the radial distribution of electric conductivity has been calculated according to Langevin's formula. The valueQ eH 11 =30·10?16 cm2 results by comparing the integrated conductance with the measured one. Since now the radial distribution of power input and the temperatures are known, the thermal conductivity between 4500 and 7000 °K can be determined as well. The total course of the heat conductivity shows a strong peak at the temperature of 3740 °K characteristic for the dissociation process.  相似文献   

12.
The ionic and electronic conductivities of the lithium nitride bromides Li6NBr3 and Li1 3N4Br have been studied in the temperature range from 50 to 220°C and 120 to 450°C, respectively. Both compounds are practically pure lithium ion conductors with negligible electronic contribution. Li6NBr3 has an ionic conductivity Ω of 2 × 10-6Ω-1cm-1 at 100°C and an activation enthalpy for σT of 0.46 eV. Li1 3N4Br shows a phase transition at about 230°C. The activation enthalpy for σT is 0.73 eV below and 0.47 eV above this temperature. The conductivities at 150 and 300°C were found to be 3.5 × 10-6 Ω-1cm-1 and 1.4 × 10-3Ω-1cm-1, respectively. The crystal structure is hexagonal at room temperature with a = 7.415 (1)A? and c = 3.865 (1)A?.  相似文献   

13.
The absorption spectrum of single crystals of ErFeO3 has been investigated in the red and near infrared spectral region in the temperature range between 1.2 °K and 4.2 °K and at 20 °K and 77 °K. Between 77 °K and 4.2 °K a constant splitting of the absorption lines is observed. Below the Néel-temperature of the erbium sublattice at 4.5 °K the splitting of the absorption lines increases; the saturation value extrapolated to 0 °K of the splitting of the lowest crystal field level of the4 I 15/2 groundterm is (6.08±0.30) cm?1. By measuring the Zeeman effect the groundstate magnetic moment is determined asμ=(6.6±0.2)μ B. The measured temperature dependence of the splitting of the lowest crystalfield level of the4I15/2 groundterm is compared with that calculated by a Monte Carlo method.  相似文献   

14.
Optical absorption spectra of Dysprosiumirongarnet (DyIG), Holmiumirongarnet (HoIG) and Erbiumirongarnet (ErlG) have been investigated in the near infrared region at temperatures of 4.2°K and 62°K. Exchange field splittings of the crystal field levels have been observed. — For the three garnets the excited levels of the groundterm up to 110 cm?1 could be determined. The exchange fields acting on the rare earth ions have been deduced as (305±50)·103 Oe for DyIG and (284±30)·103 Oe for ErIG.  相似文献   

15.
Absolute linestrengths of selected lines in the υ2 band of HNO3 have been measured using a tunable diode laser spectrometer operating in a sweep integration mode. The direct measurement technique has been employed to obtain line intensities at 296 K for 22 isolated lines in the 1720–1725 cm-1 region. The reported linestrengths have estimated uncertainties of 4%, a significant portion of this uncertainty arising from spectral interference from hot band transitions. From these linestrength measurements, an integrated band intensity of 1375 cm-2-atm-1 at 296 K is inferred.  相似文献   

16.
The strengths of 100 lines in the 2ν3band of16O12C32S have been measured at high resolution in the spectral range 4069–4118 cm−1, using a tunable difference-frequency laser spectrometer. These intensities were obtained by fitting Voigt profiles to the measured shapes of the lines. The vibrational transition moment [(2.141 ± 0.020) × 10−2D] and the absolute intensity (16.19 ± 0.24 cm−2atm−1at 296 K) of the 2ν3band of16O12C32S are determined from these linestrength measurements.  相似文献   

17.
4 )2 single crystals doped with Er3+ have been grown by the flux top-seeded-solution growth method. The crystallographic structure of the lattice has been refined, being the lattice constants a=10.652(4), b=10.374(6), c=7.582(2) Å, β=130.80(2)°. The refractive index dispersion of the host has been measured in the 350–1500 nm range. The optical absorption and photoluminescence properties of Er3+ have been characterised in the 5–300 K temperature range. At 5 K, the absorption and emission bands show the (2J+1)/2 multiplet splittings expected for the C2 symmetry site of Er in the Gd site. The energy positions and halfwidths of the 72 sublevels observed have been tabulated as well as the cross sections of the different multiplets. Six emission band sets have been observed under excitation of the 4F7/2 multiplet. The Judd–Ofelt (JO) parameters of Er3+ in KGW have been calculated: Ω2=8.90×10-20 cm2, Ω4=0.96×10-20 cm2, Ω6=0.82×10-20 cm2. Lifetimes of the 4S3/2, 4F9/2, and 4I11/2 multiplets have been measured in the 5–300 K range of temperature and compared with those calculated from the JO theory. A reduction of the 4S3/2 and 4I11/2 measured lifetimes with increasing erbium concentration has been observed, moreover the presence of multiphonon non-radiative processes is inferred from the temperature dependence of the lifetimes. Received: 15 December 1997/Revised version: 10 July 1998  相似文献   

18.
The 2.3 μm spectral region of methane can be used to retrieve cloud properties of planetary spectra, provided parameters for the methane spectrum are known. Two standard techniques for calculating absorption spectra in this region are compared here. A Voigt profile Mayer-Goody random band model is applied, using coefficients empirically fitted by Fink et al. to CH4 spectra recorded with high absorping amounts at 10 cm?1 resolution. Calculation of the absorption is also done with a line-by-line direct integration method for the same gas conditions using molecular parameters obtained by combining an older unpublished list of observed positions and estimated line strengths (derived from 0.04 cm?1 resolution data) with quantum assignments from the literature. The molecular parameters have been evaluated for the 4180–4590 cm?1 region by comparing new laboratory spectra with 0.01 cm?1 resolution recorded at 296 and 153K with synthetic spectra calculated at the same conditions. The deficiencies of the molecular parameters and random band coefficients for this spectral region of CH4 are then discussed qualitatively and demonstrated by comparing 10 cm?1 resolution synthetic spectra calculated by both methods for the same gas conditions at 296, 153, and 55 K.Curves of growth of the total equivalent width are calculated at 296 and 55K for a pathlength of 50 cm and pressures up to 10 atm. Changing the mean line spacing in the band model gives better agreement between the spectra calculated by the two techniques at low gas temperatures. The required multiplier has been determined for the mean line spacing for pressures from 10?6 to 10?1 atm at 55, 100, and 150 K.  相似文献   

19.
Spectral transmission measurements have been performed at 300°K in the v6-fundamental band of 12CH3D. Using the measured wave numbers and the calculated relative intensities of Pinkley et al, for all of the important transitions between 1100 and 1180 cm-1, a constant hydrogen-broadened line width of 0.075 cm-1 -atm-1, and Sv = 63.6 cm-2 -atm-1, we have obtained excellent agreement between calculated and observed spectral transmission data.  相似文献   

20.
A lithium plasma is produced by discharging a 40 kV, 0,3 μF capacitor through a lithium-hydride-capillary (diameter 2 mm, length 20 mm) in vacuum (p~10?4 Torr). During the first half-cycle (0,6 μs) Bremsstrahlung of Li III is observed in the visible and infrared, and the Lyman series of Li III together with the recombination continuum in the vacuum UV (100 Å). The high members of the Lyman series are broadened by Stark effect giving an electron density of about 6 · 1018 cm?3. In the infrared the radiation is emitted from an optically thick plasma at a time when the free-free continuum in the visible is emitted from an optically thin plasma. Temporal development of electron temperatureT e and electron density Ne has been measured from the absolute intensity in these spectral regions. Typical values ofT e=230 000° K andN e 5 · 1018 cm?3 e.g. have been obtained. For these values the relaxation time for an ionisation equilibrium is short compared to the observation time. The complete ionisation of Li III has been checked by absorption measurements near 100 A. Thus the absolute intensity of the recombination continuum could be calculated. An experimental arrangement was built to measure simultaneously the time history of the intensity in the vacuum ultraviolet, in the visible, and infrared spectral regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号