首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chemisorption, condensation, desorption, and decomposition of methanol, both CH3OH and CH3OD, on a clean Ni(110) surface have been characterized using high resolution electron energy loss spectroscopy, temperature programmed reaction spectroscopy, and low energy electron diffraction. The vibrational spectrum of the saturated chemisorbed layer, 7.4 × 1014 molecules cm?2, is almost identical to the infrared spectrum of liquid or solid methanol. Condensation of multilayers of methanol is facile at 80 K. The only quasi-stable intermediate isolated during the decomposition is a methoxy species, CH3O, which decomposes thermally to CO and H. The evolution of both CO and H2 occurs in desorption limited processes.  相似文献   

2.
甲醇与氟原子之间的抽氢反应可以生成HF和CH3O、CH2OH自由基等产物. 该反应在环境化学、燃烧化学、辐射化学和星际化学中都非常重要. 基于之前构建的全维高精度势能面,本文采用准经典轨线方法研究了该典型反应的动力学. 特别是使用正则模式分析方法确定了多原子产物CH3O和CH2OH的振动态分布. 研究发现,当反应物处于振转基态时,CH3O和CH2OH主要分布在基态. 当反应物CH3OH的OH伸缩模式激发为第一激发态时,产物CH2OH的OH伸缩模式、扭转模式、H2CO 面外弯曲模式及其组合会被有效激发. 在两条通道中,可用能量大部分都流入HF的振动能和产物的平动能,而自由基产物CH3O或CH2OH只得到非常少的能量,与实验结果一致,这也表明了自由基的旁观者性质.  相似文献   

3.
Electron energy loss Spectroscopy (ISEELS) under dipole scattering conditions is used to obtain the carbon and oxygen K-shell oscillator strength spectra of methanol (CH3OH), propanol (CH3CH2CH2OH), propenol (CH2=CHCH2OH), propargyl alcohol (HC≡CCH2OH), propanoic acid (CH3CH2COOH), acrylic acid (CH2=CHCOOH) and propiolic acid (HC≡CCOOH). A detailed interpretation of these spectra is presented, along with a comparison with the NEXAFS spectra of multilayers of these molecules adsorbed on a Si(111) surface, as recently reported by Outka et al. (Surf. Sci., 185 (1987) 53). Good agreement is found between the multilayer NEXAFS and the gas phase ISEEL spectra, except for the carboxylic acids which differ dramatically in the discrete portion of the O1s spectrum. Possible origins for this difference are discussed. The C1s and O1s spectra of methyl formate (HCOOCH3) are also reported and interpreted in comparison with the spectra of formic acid and methanol.  相似文献   

4.
The polar Zn-ZnO(0001) surface is involved in the catalysis of methanol synthesis and the water–gas-shift reaction. We use density functional theory calculations to explore the favorable binding geometries and energies of adsorption of several molecular species relevant to these reactions, namely carbon monoxide (CO), carbon dioxide (CO2), water (H2O) and methanol (CH3OH). We also consider several proposed reaction intermediates, including hydroxymethyl (CH2OH), methoxyl (CH3), formaldehyde (CH2O), methyl (CH3), methylene (CH2), formic acid (HCOOH), formate (HCOO), formyl (HCO), hydroxyl (OH), oxygen (O) and hydrogen (H). For each, we identify the preferred binding geometry at a coverage of 1/4 monolayers (ML), and report calculated vibrational frequencies that could aid in the identification of these species in experiment. We further explore the effects on the binding energy when the adsorbate coverage is lowered to 1/9 and 1/16 ML.  相似文献   

5.
Data from a recent instantaneous, simultaneous, high-resolution imaging experiment of Rayleigh temperature and laser induced fluorescence (LIF) of OH and CH2O at the base of a turbulent lifted methane flame issuing into a hot vitiated coflow are analysed and contrasted to reference flames to further investigate the stabilization mechanisms involved. The use of the product of the quantified OH and semi-quantified CH2O images as a marker for heat release rate is validated for transient autoigniting laminar flames. This is combined with temperature gradient information to investigate the flame structure. Super-equilibrium OH, the nature of the profiles of heat release rate with respect to OH mole fraction, and comparatively high peak heat release rates at low temperature gradients is found in the kernel structures at the flame base, and found to be indicative of autoignition stabilization.  相似文献   

6.
In the present study, the adsorption behaviour of methanol (CH3OH) and ethanol (C2H5OH) molecules over heterofullerene C59B surface is studied by density functional theory calculations. This heterofullerene is obtained from C60 by substituting a carbon atom with a boron atom and relaxing self-consistently the structure to the local minimum. The adsorption of CH3OH and C2H5OH on the C59B is exothermic and the relaxed geometries are stable. The CH3OH and C2H5OH adsorption can also induce a change in the highest occupied molecular orbital and the lowest unoccupied molecular orbital energy gap of the nanocage. The dehydrogenation pathways of CH3OH and C2H5OH via O–H and C–H bonds scission are also examined. The results indicate that O–H bond scission is the most favourable pathway on the C59B surface.  相似文献   

7.
本文利用266 nm波长的激光及程序升温脱附的方法研究了甲醇在ZnO(0001)表面的光催化反应. TPD结果显示部分的CH3OH以分子的形式吸附在ZnO(0001)表面,而另外一部分在表面发生了解离. 实验过程中探测到H2,CH3·,H2O,CO,CH2O,CO2和CH3OH这些热反应产物. 紫外激光照射实验结果表明光照可以促进CH3OH/CH3O·解离形成CH2O,在程序升温或光照的过程中它又可以转变为HCOO-. CH2OHZn与OHad反应在Zn位点上形成H2O分子. 升温或光照都能促进CH3O·转变为CH3·. 该研究对CH3OH在ZnO(0001)表面的光催化反应机理提供了一个新的见解.  相似文献   

8.
The geometries, natural charges, and resonance structures of 11 monosubstituted benzene derivatives were analyzed at the B3LYP/6‐311++G(d,p) and HF/6‐311++G(d, p) levels of theory. The following angular substituents were chosen: OCH3, CH2CH3, OH, SH, NHCH3, NHNH2, N?O, CH?CH2, N?CH2, N?NH, and CHO. The analysis of resonance structures was performed by using two different methodologies: harmonic oscillator stabilization energies (HOSE) and natural resonance theory (NRT). Also, the natural bond orbital (NBO) donor–acceptor stabilization energies for different resonance structures were calculated. We found that for all the substituents, the purely geometric resonance stabilization parameter (HOSE) is linearly correlated with quantum chemically derived resonance structure weight (NRT) of a given structure. Also, the calculations provide qualitative support for the earlier assumption of a through space angular group induced bond alternation (AGIBA) effect. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The addition reaction of CH2OO + H2O CH2(OH)OOH without and with X (X = H2CO3, CH3COOH and HCOOH) and H2O was studied at CCSD(T)/6-311+ G(3df,2dp)//B3LYP/6-311+G(2d,2p) level of theory. Our results show that X can catalyse CH2OO + H2O → CH2(OH)OOH reaction both by increasing the number of rings, and by adding the size of the ring in which ring enlargement by COOH moiety of X inserting into CH2OO···H2O is favourable one. Water-assisted CH2OO + H2O → CH2(OH)OOH can occur by H2O moiety of (H2O)2 or the whole (H2O)2 forming cyclic structure with CH2OO, where the latter form is more favourable. Because the concentration of H2CO3 is unknown, the influence of CH3COOH, HCOOH and H2O were calculated within 0–30 km altitude of the Earth's atmosphere. The results calculated within 0–5 km altitude show that H2O and HCOOH have obvious effect on enhancing the rate with the enhancement factors are, respectively, 62.47%–77.26% and 0.04%–1.76%. Within 5–30 km altitude, HCOOH has obvious effect on enhancing the title rate with the enhancement factor of 2.69%–98.28%. However, compared with the reaction of CH2OO + HCOOH, the rate of CH2OO···H2O + HCOOH is much slower.  相似文献   

10.
A novel method for the conversion of hydrocarbons to alcohols using a reaction of gas-phase oxidation by oxygen in the presence of boron trichloride has been developed and described in detail. The reaction represents radical long-chain alkoxylation of boron trichloride. It proceeds at moderate temperatures of 150–180°C and atmospheric pressures of less than one atmosphere, resulting in methane conversion to (CH3O)3–nBCln (n = 0–2) and ethane conversion to (CH3CH2O)3–nBCln (n = 0–2). The hydrolysis of the reaction products generates CH3OH and C2H5OH, respectively. The yield of methanol reaches up to 55% at the conversion of methane of ~15% at the early stages of the reaction. The yield of ethanol is at least 65% of the reacted ethane nearly to the end of the reaction.  相似文献   

11.
用光电子成像技术和从头算法研究Ag-(CH3OH)x (x=1, 2)和AgOCH3-. 从AgOCH3-振动分辨的光电子谱得 到AgOCH3-的绝热和垂直电离能分别为1.29(2)和1.34(2) eV. Ag-(CH3OH)1,2相似文献   

12.
The coupling between cavity ring-down spectroscopy (CRDS) and an environmental chamber in the investigation of photo-induced reaction mechanisms is demonstrated for the first time. The development of the CRDS device and the corresponding analytical performances are presented. The first application is devoted to the investigation of the branching ratio of the ?OH radical reaction of CH3C(O)OH and CH3C(O)OD under tropospheric conditions. An environmental chamber coupled to two complementary detection systems is used:
  • gas chromatography with FTIR spectroscopy for quantitative detection of acetic acid;
  • CRDS for quantitative detection of CO2.
  • Investigation of the reaction kinetics of ?OH+CH3C(O)OH gives a rate constant of (6.5±0.5)×10-13 cm3?molecule-1?s-1 (296 K) and shows good agreement with literature data. The product study indicates that the H-abstraction channel from the acid group is the dominant pathway with a branching ratio of (78±13)%, whereas the corresponding D-abstraction channel in the ?OH+CH3C(O)OD reaction represents only (36±7)%. This result could be attributed to a strong kinetic isotope effect. Glyoxylic acid has also been detected for the first time as by-product. These results illustrate the high interest of the CRDS technique in the investigation of atmospheric relevant problems.  相似文献   

    13.
    The perturbation of the combustion by NOx is important in several practical systems (recent NOx-reduction strategies, combustion with exhaust-gas recirculation in diesel and HCCI engines and for mild combustion). New experimental results were obtained for the oxidation of methanol in absence and in presence of NO or NO2 in a fused silica jet-stirred reactor operating at 10 atm, over the temperature range 700-1100 K. Probe sampling followed by on-line FTIR analyses and off-line GC-TCD/FID analyses permitted to measure the concentration profiles of the reactants, stable intermediates and the final products. A detailed chemical kinetic modeling of the present experiments was performed. An overall good agreement between the present data and this modeling was obtained. The oxidation of methanol is significantly sensitized by NO2, whereas the effect of NO is more limited. According to the proposed model, the mutual sensitization of the oxidation of methanol and NO proceeds through the NO to NO2 conversion by HO2. The increased production of OH resulting from the oxidation of NO by HO2 promotes the oxidation of the fuel. A simplified reaction scheme can be proposed for the NO-seeded oxidation of methanol: NO + HO2 ⇒ NO2 + OH followed by OH + CH3OH ⇒ H2O + CH2OH and CH3O. The enhanced oxidation of methanol by addition of NO2 is also due to additional OH production through: NO2 + HO2 ⇒ HONO + O2, NO2 + H ⇒ NO + OH and HONO ⇒ NO + OH followed by OH + CH3OH ⇒ CH2OH and CH3O. The further reactions CH2OH + O2 ⇒ CH2O + HO2; CH3O ⇒ CH2O + H; CH2O + OH ⇒ HCO; HCO + O2 ⇒ HO2 and H + O2 ⇒ HO2 complete the sequence whether NO or NO2 is added.  相似文献   

    14.
    The rotational spectrum of (CH3OH)2 has been observed in the region 4-22 GHz with pulsed-beam Fabry-Perot cavity Fourier-transform microwave spectrometers at NIST and at the University of Kiel. Each a-type R(J), Ka = 0 transition is split into 15 states by tunneling motions for (CH3OH)2, (13CH3OH)2, (CH3OD)2, (CD3OH)2, and (CD3OH)2. The preliminary analysis of the methyl internal rotation presented here was guided by the previously developed multidimensional tunneling theory which predicts 16 tunneling components for each R(J) transition from 25 distinct tunneling motions. Several isotopically mixed dimers of methanol have also been measured, namely 13CH3OH, CH3OD, CD3OH, and CD3OD bound to 12CH3OH. Since the hydrogen bond interchange motion (which converts a donor into an acceptor) would produce a new and less favorable conformation from an energy viewpoint, it does not occur and only 10 tunneling components are observed for these mixed dimers. The structure of the complex is similar to that of water dimer with a hydrogen bond distance of 2.035 Å and a tilt of the acceptor methanol of 84° from the O-H-O axis. The effective barrier to internal rotation for the donor methyl group of (CH3OH)2 is ν3 = 183.0 cm−1 and is one-half of the value for the methanol monomer (370 cm−1), while the barrier to internal rotation of the acceptor methyl group is 120 cm−1.  相似文献   

    15.
    The formation mechanism of CH3O by the adsorption and decomposition of CH3OH on clean and oxygen-precovered Cu2O(1 1 1) surface has been investigated with density functional theory method together with the periodic slab models. Two possible formation pathways of CH3O by CH3OH decomposition on oxygen-precovered (Opre) Cu2O(1 1 1) surface were proposed and discussed. One is the O-H bond-cleavage of CH3OH with H migration to Opre to form CH3O; the other is the C-O bond-scission of CH3OH with CH3 migration to Opre leading to CH3Opre. The calculated results show that the O-H bond-breaking path has the lowest activation barrier 26.8 kJ mol−1, the presence of oxygen-precovered on Cu2O(1 1 1) surface exhibits a high surface reactivity toward the formation of CH3O by the O-H bond-cleavage of CH3OH, and reduce the activation barrier of O-H bond-cleavage. The C-O bond-breaking path was inhibited by dynamics, suggesting that the O atom of CH3O is not from the oxygen-precovered, but comes from the O of CH3OH. Meanwhile, the calculated results give a clear illustration about the formation mechanism of CH3O in the presence of oxygen and the role of oxygen at the microscopic level.  相似文献   

    16.
    The technique of optical pumping in polar molecules is the most efficient for Far-Infrared (FIR) laser generation, providing also a versatile and powerful tool for molecular spectroscopy in this spectral region. Methanol (CH3OH) and its isotopic varieties are the best media for optically pumped FIR laser, with over thousand lines observed, and the most widely used for investigations and applications. In this sense, it is important organize and make available catalogues of FIR laser lines as complete as possible. Since the last critical reviews of 1984 [1] on methanol and its isotopic varieties [2,3,4], over hundred papers have been published dealing with hundreds of new FIR laser lines. In 1992 a review of FIR laser lines from CH3OH was presented [5]. In this communication we extend this work to the other methanol isotopes, namely CH3OD, CD3OH, CD3OD,13CH3OH,13CD3OH,13CD3OD, CH3 18OH, CH2DOH, CHD2OH and CH2DOD.Work supported by FAPESP, CNPq, FAEP-Brasil, and CNR-Italia  相似文献   

    17.
    《Surface science》1986,167(1):101-126
    The kinetics and mechanism of the decomposition of methanol (CH3OD) on oxygen-covered Pt(111) were studied using static secondary ion mass spectrometry (SIMS) and temperature programmed desorption (TPD). The initial sticking coefficient and the saturation first layer coverage of CH3OD are unity and 0.36 ML, respectively. The maximum amounts decomposed in TPD on O/Pt(111) and clean Pt(111) are 0.19 and 0.047 ML, respectively. At low methanol coverages (< 0.05 ML) on O/Pt(111) the only reaction products were CO2, H2O and D2O, whereas at saturation CO, H2O, D2O and H2 were observed. The decomposed amount did not saturate at or before the onset of molecular methanol desorption, but increeased monotonically until saturation of the first layer. No oxygen exchange was observed between CH3OD and preadsorbed 18O. A decomposition mechanism involving methoxy and hydroxyl type species is proposed. Methanol coverages as low as 0.002 ML could be detected with SIMS. The CH3+ ion was the most intense ion in the positive SIMS spectrum of both methanol and methoxy. Larger ion clusters such as (CH3OD)n+ (n = 2, 3) developed successively at specific multilayer coverages. At low coverages on O/Pt(111), methoxy formation occurs above 125 K and its decomposition becomes detectable above 150 K during temperature programming. In the isothermal mode, the SIMS CH3+ ion was used to follow the kinetics. Over the temperature range 120–145 K, the second order Arrhenius rate parameters for methoxy formation are E = 5.5±0.7 kcal/mol and A = 1.5×10−7±0.6 cm2/s·molecule for an initial methanol coverage of 0.05 ML. Methoxy decomposition was studied in the temperature range 150–165 K and at an initial coverage of 0.015 ML. The first order kinetic parameters, E = 11.4±0.5 kcal/mol and A = 5.3×1013±1 s−1 were derived. Advantages and limitations of using SIMS as a tool for kinetic studies are discussed.  相似文献   

    18.
    Direct dynamics calculations have been performed for three reactions: C3H8 + H → i-C3H7 + H2, C3H8 + H → n-C3H7 + H2, and C2H3 + O2 → HCO + CH2O. The fraction of the population for the radical products that promptly dissociates is computed. The results for C3H8 + H are qualitatively similar to previous results for C3H8 + OH, but the new results exhibit a slightly higher branching fraction for prompt dissociation products, owing to the fact that a greater fraction of the internal energy in the transition state ends up in the radical. For C2H3 + O2 → HCO + CH2O, the fraction of HCO that promptly dissociates is in excess of 99%. Consequently, the main product for C2H3 + O2 at lower temperatures should be written as H + CO + CH2O and not HCO + CH2O. These results are then compared with four previous systems: CH2O + H → HCO + H2, CH2O + OH → HCO + H2O, C3H8 + OH → i-C3H7 + H2O, and C3H8 + OH → n-C3H7 + H2O. Based upon these seven system, several statistical models are presented. The goal of these statistical models is to predict the fraction of the transition state energy that ends up in the rovibrationally excited radical. On average, these statistical models provide an excellent prediction of product energy distribution. Consequently, these models can be used instead of costly trajectory simulations for predicting prompt radical dissociation for larger species.  相似文献   

    19.
    The oxidation of methanol was studied on a Ag(110) single-crystal by temperature programmed reaction spectroscopy. The Ag(110) surface was preoxidized with oxygen-18, and deuterated methanol, CH3OD, was used to distinguish the hydroxyl hydrogen from the methyl hydrogens. Very little methanol chemisorbed on the oxygen-free Ag(110) surface, and the ability of the silver surface to dissociatively chemisorb methanol was greatly enhanced by surface oxygen. CH3OD was selectively oxidized upon adsorption at 180 K to adsorbed CH3O and D218O, and at high coverages the D218O was displaced from the Ag(110) surface. The methoxide species was the most abundant surface intermediate and decomposed via reaction channels at 250, 300 and 340 K to H2CO and hydrogen. Adsorbed H2CO also reacted with adsorbed CH3O to form H2COOCH3which subsequently yielded HCOOCH3 and hydrogen. The first-order rate constant for the dehydrogenation of D2COOCH3 to DCOOCH3 and deuterium was found to be (2.4 ± 2.0) × 1011 exp(?14.0 ± 0.5 kcalmole · RT)sec?1. This reaction is analogous to alkoxide transfer from metal alkoxides to aldehydes in the liquid phase. Excess surface oxygen atoms on the silver substrate resulted in the further oxidation of adsorbed H2CO to carbon dioxide and water. The oxidation of methanol on Ag(110) is compared to the previous study on Cu(110).  相似文献   

    20.
    The Raman spectra of neat propionaldehyde [CH3CH2CHO or propanal (Pr)] and its binary mixtures with hydrogen‐donor solvents, water (W) and methanol (M), [CH3CH2CHO + H2O] and CH3CH2CHO + CH3OH] with different mole fractions of the reference system, Pr varying from 0.1 to 0.9 at a regular interval of 0.1, were recorded in the ν(CO) stretching region, 1600–1800 cm−1. The isotropic parts of the Raman spectra were analyzed for both the cases. The wavenumber positions and line widths of the component bands were determined by a rigorous line‐shape analysis, and the peaks corresponding to self‐associated and hydrogen‐bonded species were identified. Raman peak at ∼1721 cm−1 in neat Pr, which has been attributed to the self‐associated species, downshifts slightly (∼1 cm−1) in going from mole fraction 0.9 to 0.6 in (Pr + W) binary mixture, but on further dilution it shows a sudden downshift of ∼7 cm−1. This has been attributed to the low solubility of Pr in W (∼30%), which does not permit a hydrogen‐bonded network to form at higher concentrations of Pr. A significant decrease in the intensity of this peak in the Raman spectra of Pr in a nonpolar solvent, n‐heptane, at high dilution (C = 0.05) further confirms that this peak corresponds to the self‐associated species. In case of the (Pr + M) binary mixture, however, the spectral changes with concentration show a rather regular trend and no special features were observed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号