首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The cationic diphenylphosphido-bridged compound [Ru2(μ-PPh2)(μ-OH)26-p-cymene)2][PF6) (2) has been prepared by reaction of the tri-μ-hydroxo complex [Ru2(μ-OH)3(η-p-cymene)2][PF6] (1) with diphenylphosphine. Complex 2 eliminates water on reaction with protic acids, incorporating the conjugate base of the added acid as a bridging ligand. Formic acid, acetic acid, phenol, and aniline react with 2 to give the monosubstituted compounds [Ru2(μ-PPh2)(μ-OH)(μ-L)(η6-p-cymene)2]PF6] (L = HCO2, MeCO2, OPh, or NHPH), whereas methanol, thiophenol, 1,2-benzenedithiol, hydrochloric acid and isopropanol afford the disubstituted derivatives [Ru2(μ-PPh2)(μ-L)26-p-cymene)2]PF6] (L = OMe, SPh, S2C6H4, Cl, or H).  相似文献   

3.
The reaction between metallic barium and fluoroisopropanol or alcoholysis of [Ba(OPri)2] produces a pentanuclear fluoroalkoxide. Its X-ray structure determination showed its formulation to correspond to Ba55-OH)[μ3-OCH(CF3)2]42-OCH(CF3)2]4 [OCH(CF3)2](THF)4(H2O)·THF. The metallic core is based on a square pyramid encapsulating an hydroxo ligand. In addition to the barium---alkoxide bonds [2.53(3)–2.86(3) Å] neutral O-donors, four THF [2.82(2)–2.86(3) Å] and one H2O [2.79(3) Å] and secondary barium---fluorine interactions [2.99(2)–3.31(2) Å] ensure high coordination numbers, from 9 to 11 for the metal centers. Hydrogen bonding between the apical fluoroisopropoxide, the water molecule and one THF molecule, non-bonded to a metal center, accounts for the stability of the hydrate and illustrates the Lewis acidity of fluoroalkoxides. Thermal decomposition leads to BaF2.  相似文献   

4.
The reaction between Ru3(CO)12 and a cyclic olefin (cis-cyclooctene or trans-cyclododecene) at 100 °C for several hours gives the title compounds (μ-H)2RU3(CO)932-C8H12) (1), and (μ-H)RU3(CO)933-C12H19) (2), both of which have been characterized by X-ray diffraction studies, IR and NMR spectral measurements and elemental analysis. The prolonged reaction between Ru3(CO)12 and cis-cyclooctene gives compound HRu3(CO)9(C8H11) (3). Compound 3 has been characterized with IR and NMR spectral analyses. In 1 the cyclooctene ring is linked via a μ32-alkyne type of bonding to the face of the Ru3 cluster. It is formally σ-bonded to two of the three Ru atoms and π-bonded to the third Ru. The two hydrides in 1 are bridging Ru---Ru bonds. In 2 the cyclododecene ring is bonded to the Ru3 face via the μ33-CCHC linkage. There are two formal σ-bonds from the allyl part to the hydrido-bridged Ru atoms and the η3-allyl linkage to the third Ru atom.  相似文献   

5.
Reaction of the Et3NH+ salts of the [(μ-RS)(μ-CO)Fe2(CO)6] anions (R=But, Ph or PhCH2) with (μ-S2)Fe2(CO)6 gives reactive intermediates [(μ-RS)(μ-S){Fe2(CO)6}24-S)]. Reactions of the latter with alkyl halides, acid chlorides and Cp(CO)2FeI have been studied. X-Ray structure of (μ-ButS)(μ-PhCH2S)[Fe2(CO)6]24-S) was determined.  相似文献   

6.
The behaviour of Be4O(NO3)6 under electron impact is similar to that of its carboxylato analogues, Be4O(RCO2)6 where R is H, alkyl or halogenated alkyl. In all these systems, the dissociation of the molecular ions is dominated by steric interactions. The major fragmentations involve the elimination of N2O5 or (RCO)2O and Be(NO3)2 or Be(RCO2)2 from the ions [M-NO3]+ or [M-RCO2]+. The results obtained confirm the structural similarity of the nitrato complex to tetra-nuclear beryllium oxocarboxylates.  相似文献   

7.
The methylene-bridged, mixed-chalogen compounds Fe2(CO)6(μ-SeCH2Te) (1) and Fe2(CO)6(μ-SCH2Te) (3) have been synthesised from the room temperature reaction of diazomethane with Fe2(CO)6(μ-SeTe) and Fe2(CO)6(μ-STe), respectively. Compounds 1 and 3 have been characterised by IR, 1H, 13C, 77Se and 125Te NMR spectroscopy. The structure of 1 has been elucidated by X-ray crystallography. The crystalsare monoclinic,space group P21/n, A = 6.695(2), B = 13.993(5), C = 14.007(4)Å, β = 103.03(2)°, V = 1278(7) Å3, Z = 4, Dc = 2.599 g cm−3 and R = 0.030 (Rw = 0.047).  相似文献   

8.
The singlet-triplet separations for the edge-sharing bioctahedral (ESBO) complex W2(μ-H)(μ-Cl)(Cl4(μ-dppm)2 · (THF)3 (II) has been studied by 31P NMR spectroscopy. The structural characterization of [W2(μ-H)2(μ-O2CC6H5)2Cl2(P(C6H5)3)2] (I) by single-crystal X-ray crystallography has allowed the comparison of the energy of the HOMOLUMO separation determined using the Fenske-Hall method for a series of ESBO complexes with two hydride bridging atoms, two chloride bridging atoms and the mixed case with a chloride and hydride bridging atom. The complex representing the mixed case, [W2(μ-H)(μ-Cl)Cl4(μ-dppm)2 · (THF)3] (II), has been synthesized and the value of −2J determined from variable-temperature 31P NMR spectroscopy.  相似文献   

9.
Treatment of closo-[Ru44-PPh)22-CO)(CO)10] with acetylene under ambient conditions leads to the insertion of the acetylene into the skeletal framework of the cluster and the formation of [Ru44-PPh){μ43-P(Ph)CHCH}(μ2-CO)(CO)10], the structure of which has been determined X-ray crystallographically.  相似文献   

10.
The product isolated from the reaction of (μ-H)2Os3(CO)9(PPh3) with ethylene is shown to be the ethylidene complex (μ-H)2Os3(CO)9(PPh3)(μ-CHCH3) (1) rather than the ethylene complex (μ-H)(H)Os3(CO)9(PPh3)(C2H4), as previously claimed. The characterization of 1 is based on a combination of 1H and 13C NMR results. The 1H NMR data (δ 6.84 (1 HD), 2.53 (3 HC), J(CD) = 7.4 Hz) establish the presence of the ethylidene moiety, whereas detailed analysis of the 1-D and 2-D 13C NMR spectra of 13CO-enriched 1 indicates the relative positions of the ethylidene, hydride, and phosphine ligands on the triosmium framework.  相似文献   

11.
Structures of non metal-metal bonded phosphido-bridged heterobimetallic complexes, including CpFe(CO)2(μ-PPh2)W(CO)5 (1-W) and metal-metal bonded CpFe(CO)(μ-CO)(μ-PPh2)W(CO)4 (2), were determined by a single crystal X-ray diffraction study. In 1-W, the long distance between Fe and W indicates no metal-metal bond to exist. In 2, a Fe---W bond with bond length 2.851 Å and a semibridging carbonyl with W---C---O angle 153° were observed. Mössbauer spectra of 1-W and 2 were taken at 77 K. Isomer shifts of 1-W and 2 were − 0.0203 mm s−1 and 0. 1917 mm s−1 respectively.  相似文献   

12.
The coordinatively unsaturated cluster [Pt33-CO)(μ-dppm)3]2+ (1, dppm = Ph2PCH2PPh2) reacts with Na+[M(CO)5] to give the mixed metal clusters [Pt3{M(CO)3}(μ-dppm)3]+ (M = Re, 2; Mn, 3). The new clusters are characterized by spectroscopic methods and, for M = Re, by an X-ray structure determination. The Pt3Re core in 2 is tetrahedral with particularly short metal-metal distances.  相似文献   

13.
Two new compounds Pd2Os3(CO)12 , 13 and Pd3Os3(CO)12 , 14 have been obtained from the reaction of with Os3(CO)12 at room temperature. The products were formed by the addition of two and three groups to the Os–Os bonds of Os3(CO)12. Compounds 13 and 14 interconvert between themselves by intermolecular exchange of the groups in solution. Compounds 13 and 14 have been characterized by single crystal X-ray diffraction analyses.Dedicated to Professor Brian F. G. Johnson on the occasion of his retirement – 2005.  相似文献   

14.
The dinuclear complex [Co2(μ-OAc)2(OAc)2(μ-H2O)(phen)2] has been prepared and its structure was determined. The compound crystallizes in the monoclinic space group P2(1)/c. The Co–Co distance is 3.574 Å and is similar to the Fe–Fe distance in the reduced methane monooxygenase hydroxylase. The electronic and IR spectra of the complex confirm octahedral coordination of the cobalt atoms and formation of strong O–HO hydrogen bonds in the solid state. The dependence of the magnetic susceptibility of the complex on temperature indicates an antiferromagnetic interaction, the value of the isotropic exchange parameter J was estimated to be −2.1 cm−1. The 1H NMR spectra show that in organic solvents the structure of compound is the same as in the solid state, however, in water solution the complex dissociates giving compounds with different Co:phen ratios.  相似文献   

15.
Irradiation of the 30-electron Mo25-C5Me5)2(CO)4 and Re2(CO)10 in toluene solution (containing H2O) afforded (in 1–2% yields) a novel triangular metal cluster, (η5-C5Me5)3Mo3(CO)42-H)(η3-O) (1), which was characterized by a single-crystal X-ray diffraction study. Compound 1, of pseudo Cs-m symmetry, has a triangulo-Mo33-O) core with composite Mo---H---Mo and Mo---Mo electron-pair bonds along one unusually short edge (2.660(1) Å) and Mo--- electron-pair bonds along the other two edges (2.916(1) and 2.917(1) Å). The edge-bridged hydride ligand, which displays a characteristic high-field proton NMR resonance at δ −17.79 ppm, was not found from the crystallographic determination but was located via a quantitative potential-energy-minimization method. This procedure unambiguously established that the optimized hydrogen position, which corresponds to a distinct coordination site with identical Mo---H distances of 1.85 Å, is the only one that can be sterically occupied by a metal-bound hydride ligand. This 46-electron species is the first electron-deficient trimolybdenum cluster containing a monoprotonated Mo---Mo double bond; its existence is attributed to ligand overcrowding due to the bulky pentamethylcyclopentadienyl rings. Black (η5- C5Me5)3Mo3(CO)42-H)(η3-O) · 1/2THF crystallizes with two formula species in a triclinic unit cell of P1 symmetry with a 8.603(4), b 11.115(4), c 19.412(11) Å, 80.69(4)°, β 101.10(4)°, and γ 98.88(3)° at −40° C. Least-squares refinement (RAELS with 221 variables) of one independent Mo3 molecule and a centrosymmetrically-disordered THF molecule converged at R1(F) 5.62%, R2(F 6.88% for 8460 independent diffractometry data (I0 ρ 3σ(I0 collected at −40° C with Mo-K radiation  相似文献   

16.
Reaction of (μ3-CCH3)CO3(CO)9 (I) with dppm (dppm = bis-(diphenylphosphino)methane) affords the cluster (μ3-CCH3)Co3(CO)7-dppm (II). The crystal and molecular structure of II have been determined at −160°C. The dppm ligand bridges one of the three metal—metal edges in the equatorial plane to give a five-membered ring, which adopts an envelope conformation.

Cluster II functions as a catalyst for the hydroformylation of 1-pentene (80 bar of H2/CO (1/1); 110°C). The results indicate that the dppm bridging ligand stabilizes and activates the cluster for catalysis, and open the way to the synthesis of chiral clusters.  相似文献   


17.
Peter C. Junk  Jonathan W. Steed   《Polyhedron》1999,18(27):4646-3597
[Co(η2-CO3)(NH3)4](NO3)·0.5H2O and [(NH3)3Co(μ-OH)2(μ-CO3)Co(NH3)3][NO3]2·H2O were prepared by prolonged aerial oxidation of a solution of Co(NO3)2·6H2O and ammonium carbonate in aqueous ammonia. The formation of these side products highlights the richness of the chemistry of these systems and the possibility of by products if methods are not strictly adhered to. The X-ray crystal structures of [Co(η2-CO3)(NH3)4][NO3]·0.5H2O and [(NH3)3Co(μ-OH)2(μ-CO3)Co(NH3)3][NO3]2·H2O reveal a monomeric octahedral cobalt center with η2-bound CO32− in the former, while the latter consists of a dimeric array where the two cobalt centers are bridged by two OH and one μ2-CO32− groups with three terminal NH3 ligands for each Co center. In both complexes extensive hydrogen bonding interactions are evident.  相似文献   

18.
Reaction of Li with AsClR2 (R = CH(SiMe3)2) affords [Li(μ-AsR2]3 (I), the first structurally characterised dialkylarsenide, which in OEt2 at 25°C yields AsHR2, AsMeR2, AsHR2, or A.sR2 (II) with HCl, MeCl, ButCl, or SnCl2, respectively; upon removal of solvent, II furnishes As2R4 (III), which readily dissociates into II: the As3Li3 ring of I has a boat conformation and the average Li---As bond distance is 2.60(4) Å.  相似文献   

19.
A metal-organic complex, which has the potential property of absorbing gases, [LaCu6(μ-OH)3(Gly)6im6](ClO4)6 was synthesized through the self-assembly of La3+, Cu2+, glycine (Gly) and imidazole (Im) in aqueous solution and characterized by IR, element analysis and powder XRD. The molar heat capacity, Cp,m, was measured from T = 80 to 390 K with an automated adiabatic calorimeter. The thermodynamic functions [HT − H298.15] and [ST − S298.15] were derived from the heat capacity data with temperature interval of 5 K. The thermal stability of the complex was investigated by differential scanning calorimetry (DSC).  相似文献   

20.
When [HFe(CO)4]? is treated first with NaBiO3 and then dilute H2SO4, a complex mixture of neutral metal carbonyl clusters results, some of which can be extracted into petroleum ether. Upon prolonged standing the extract yields a precipitate which has been characterized by X-ray crystallography as Bi2Fe3(CO)9.The complex Bi2Fe3(CO)9 crystallizes in the centrosymmetric orthorhombic space group Cmcm (D2h17; No. 63) with a 10.616(2) Å, b 13.458(3) Å, c 11.347(3) Å, V 1621.1(7) Å3 and Z = 4. Single-crystal X-ray diffraction data (Mo-Kα, 2θ = 4.5–55.0°) were collected on a Syntex P21 four-circle diffractometer and the structure was refined to RF 5.4% and RWF 4.5% for all 1039 independent data (RF 4.5% and RWF 4.5% for those 851 reflections with |F0| > 3.0σ(|F0|)). The molecule lies on a site of crystallographic C2v symmetry and is disordered. The individual molecules have a trigonal bipyramidal Bi2Fe3 core with the bismuth atoms occupying the apical sites (BiFe 2.617(2)–2.643(2) Å, FeFe 2.735(5)–2.757(5) Å). Each iron atom is linked to three terminal carbonyl ligands and the molecule has approximate C3h symmetry. The nine peripheral oxygen atoms are ordered and define a tricapped trigonal prism. The equatorial iron atoms are disordered with the two Fe3 triangles mutually displaced by approximately 30°; the disordered ensemble has approximate D3h symmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号