首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We construct a Sobolev homeomorphism in dimension \({n \geqq 4,\,f \in W^{1,1}((0, 1)^n,\mathbb{R}^n)}\) such that \({J_f = {\rm det} Df > 0}\) on a set of positive measure and J f  < 0 on a set of positive measure. It follows that there are no diffeomorphisms (or piecewise affine homeomorphisms) f k such that \({f_k\to f}\) in \({W^{1,1}_{\rm loc}}\).  相似文献   

2.
Roy  S.  Takhar  H.S.  Nath  G. 《Meccanica》2004,39(3):271-283
Unsteady flow over an infinite permeable rotating cone in a rotating fluid in the presence of an applied magnetic field has been investigated. The unsteadiness is induced by the time-dependent angular velocity of the body, as well as that of the fluid. The partial differential equations governing the flow have been solved numerically by using an implicit finite-difference scheme in combination with the quasi-linearization technique. For large values of the magnetic parameter, analytical solutions have also been obtained for the steady-state case. It is observed that the magnetic field, surface velocity, and suction and injection strongly affect the local skin friction coefficients in the tangential and azimuthal directions. The local skin friction coefficients increase when the angular velocity of the fluid or body increases with time, but these decrease with decreasing angular velocity. The skin friction coefficients in the tangential and azimuthal directions vanish when the angular velocities of fluid and the body are equal but this does not imply separation. When the angular velocity of the fluid is greater than that of the body, the velocity profiles reach their asymptotic values at the edge of the boundary layer in an oscillatory manner, but the magnetic field or suction reduces or suppresses these oscillations.  相似文献   

3.
The equations of the dynamics of a finitelength curved rod in a viscous flow are derived. The longitudinal stability of the rod against small deflections from a rectilinear form is studied for two types of flow (pure and simple shear). The minimum flexural rigidity of the rod that ensures rod stability for any orientation in the flow is found. The effective viscosity of a suspension filled with rectilinear discrete fibers is estimated.  相似文献   

4.
An exact solution is constructed, which describes a gas glow in a strip between a rectilinear source and sink. With time, the strip turns and expands. In the case of consistent boundary conditions, the flow in the strip is continuous. If the consistency constraints are violated, a shock wave is formed inside the strip.  相似文献   

5.
Air-assisted atomizers in which a thin liquid sheet is deformed under the action of a high-speed air flow are extensively used in industrial applications, e.g., in aircraft turbojet injectors. Primary atomization in these devices is a consequence of the onset and growth of instabilities on the air/liquid interfaces. To better understand this process, a temporal linear instability analysis is applied to a thin planar liquid sheet flowing between two semi-infinite streams of a high-speed viscous gas. This study includes the full viscous effects both in the liquid and gas basic states and perturbations. The relevant dimensionless groups entering the non-dimensional Orr–Sommerfeld equations and boundary conditions are the liquid and gas stream Reynolds numbers, the gas to liquid momentum flux ratio, the gas/liquid velocity ratio, the Weber number and the equivalent gas boundary layer to liquid sheet thickness ratio. Growth rates and temporal frequencies as a function of the wave number, varying the different dimensionless parameters are presented, together with neutral stability curves. From the results of this parametric study it is concluded that when the physical properties of gas and liquid are fixed, the momentum flux ratio is especially relevant to determine the instability conditions. It is also observed that the gas boundary layer thickness strongly influences the wave propagation, and acts by damping sheet oscillation frequency and growth. This is especially important because viscosity in the basic gas velocity profile has always been ignored in instability analysis applied to the geometry under study. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
In this paper we study the motion of a self-propelled rigid body through a Navier-Stokes fluid that fills all the three-dimensional space exterior to it. We formulate the problem and prove the existence of a weak solution that is defined globally in time, provided that the net flux across the boundary, of the prescribed boundary values for the velocity, is zero. It is these prescribed boundary values that propel the body, and the body is free to rotate during its motion. In the special case of a body which is symmetric about an axis, and propelled by symmetric boundary values, we obtain strong solutions representing translational motions in the direction of the axis. Further, we prove that for small Reynolds numbers every steady solution with such axial symmetry is attainable as the limit, as time tends to infinity, of a strong nonsteady solution which starts from rest.  相似文献   

7.
Equations of spatial motion of a curved finitelength rod in a viscous fluid flow are derived. Analytical solutions of problems on the motion of a straight rod under conditions of pure shear, simple shear, and uniaxial extension of the fluid are obtained. Longitudinal stability of the straight rod during its spatial motion is considered. Effective viscosity of a suspension filled by rigid straight rods is evaluated.  相似文献   

8.
We prove the existence of global-in-time weak solutions to a model describing the motion of several rigid bodies in a viscous compressible fluid. Unlike most recent results of similar type, there is no restriction on the existence time, regardless of possible collisions of two or more rigid bodies and/or a contact of the bodies with the boundary. (Accepted September 23, 2002) Published online February 4, 2003 Communicated by Y. Brenier  相似文献   

9.
The flow of a viscous incompressible fluid between coaxial cylinders rotating with a constant rigid-body acceleration about the axis is studied numerically. A one-dimensional time-dependent solution of the Navier-Stokes equations is constructed analytically for the motion starting from the state of rest. On the initial time interval the one-dimensional unsteady fluid motion is unstable. Small perturbations introduced into the flow initiate the formation of secondary vortex flows with a velocity component along the axis. The dynamics of the developing instabilities and their dissipation are studied numerically. A condition determining the dimensions of the unsteady secondary flow zone is formulated. The unsteady regime is transient and starting from a certain instant of time the flow becomes stable.  相似文献   

10.
The problem of two-dimensional unsteady flow of a viscous incompressible fluid in a sector-like domain is considered. Initially a strictly radial flow is imposed, which makes it possible to seek solutions within the class of self-similar flows. A numerical method based on mixed finite-difference and spectral spatial discretization is developed, making it possible to find the self-similar solution efficiently. The process of development and establishment of the steady Hamel-Jeffery and Moffatt flows is modeled mathematically.  相似文献   

11.
An expression for the drag force on a spheroidal hydrosol particle is obtained for arbitrary temperature differences between the particle surface and the far region and with account for the temperature dependence of the viscosity represented in the form of an exponential-power series.  相似文献   

12.
Raptis  A.  Perdikis  C. 《Transport in Porous Media》2004,57(2):171-179
The unsteady natural convection flow of a viscous and incompressible fluid through a porous medium with high porosity bounded by a vertical infinite stationary plate in the presence of radiation has been investigated. The fluid is assumed to be a gray, emitting and absorbing radiation, but non-scattering medium. The effects of the radiation parameter, Grashof number and permeability parameter of the medium on the velocity field as well as the effects of the radiation parameter and Prandtl number on the temperature field have been included in the analysis.  相似文献   

13.
The flow of a nonlinearly viscous (power-law) fluid over the surface of a rotating flat disk is investigated. A solution form which makes it possible to reduce the complete system of partial differential equations to a system of ordinary differential equations is found. This system is integrated using the Runge-Kutta method and reduction to a Cauchy problem on the basis of Newton's method. The velocity and pressure fields in a power-law fluid film flowing over the surface of a rotating flat disk are found numerically.  相似文献   

14.
Numerically investigation of free convection within a porous cavity with differential heating has been performed using modified corrugated side walls. Sinusoidal hot left and cold right walls are assumed to receive sudden differentially heating where top and bottom walls are insulated. Air is considered as working fluid and is quiescent, initially. Numerical experiments reveal 3 distinct stages of developing pattern including initial stage, oscillatory intermediate, and finally steady-state condition. Implicit Finite Volume Method with TDMA solver is used to solve the governing equations. This study has been performed for the Rayleigh numbers ranging from 100 to 10,000. Outcomes have been reported in terms of isotherms, streamline, velocity and temperature plots and average Nusselt number for various Ra, corrugation frequency, and corrugation amplitude (CA). The effects of sudden differential heating and its resultant transient behavior on fluid flow and heat transfer characteristics have been shown for the range of governing parameters. The present results show that the transient phenomena are enormously influenced by the variation of the Rayleigh Number with CA and frequency.  相似文献   

15.
An asymptotic solution is obtained that describes the unsteady motion of a shaft in a cylindrical plain bearing with hydrodynamic lubrication in the case of a constant external load. Oscillatory modes of transition to a steady-state position of the shaft for various values of the external load are considered. The characteristic time of velocity relaxation to the quasiequilibrium values determined from the inertialess approximation equations is obtained. Oscillation frequencies and amplitudes, shaft paths, and oscillation decay times are determined. The effect of a thin elastic liner on the characteristics of the transient process is explored.  相似文献   

16.
The motion of a rigid sphere in a viscous fluid due to specified pulsations of the sphere and specified oscillations of the fluid away from the sphere is considered.  相似文献   

17.
18.
. We study the evolution of a finite number of rigid bodies within a viscous incompressible fluid in a bounded domain of with Dirichlet boundary conditions. By introducing an appropriate weak formulation for the complete problem, we prove existence of solutions for initial velocities in . In the absence of collisions, solutions exist for all time in dimension 2, whereas in dimension 3 the lifespan of solutions is infinite only for small enough data. (Accepted June 10, 1998)  相似文献   

19.
The motion of a circular cylinder under gravity in an ideal liquid bounded from the outside by a vibrating wall is determined using numerical methods.  相似文献   

20.
We show existence, uniqueness and spatial asymptotic behavior of a two-dimensional time-periodic flow around a cylinder that moves orthogonal to its axis, with a time-periodic velocity, v. The result is proved if the size of the data is sufficiently small, and the average of v over a period is not zero.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号