首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The chemical potentials of CaO in two-phase fields (TiO2 + CaTiO3), (CaTiO3 + Ca4Ti3O10), and (Ca4Ti3O10 + Ca3Ti2O7) of the pseudo-binary system (CaO + TiO2) have been measured in the temperature range (900 to 1250) K, relative to pure CaO as the reference state, using solid-state galvanic cells incorporating single crystal CaF2 as the solid electrolyte. The cells were operated under pure oxygen at ambient pressure. The standard Gibbs free energies of formation of calcium titanates, CaTiO3, Ca4Ti3O10, and Ca3Ti2O7, from their component binary oxides were derived from the reversible e.m.f.s. The results can be summarised by the following equations: CaO(solid) + TiO2(solid)  CaTiO3(solid), ΔG° ± 85/(J · mol?1) = ?80,140 ? 6.302(T/K); 4CaO(solid) + 3TiO2(solid)  Ca4Ti3O10(solid), ΔG° ± 275/(J · mol?1) = ?243,473 ? 25.758(T/K); 3CaO(solid) + 2TiO2(solid)  Ca3Ti2O7(solid), ΔG° ± 185/(J · mol?1) = ?164,217 ? 16.838(T/K).The reference state for solid TiO2 is the rutile form. The results of this study are in good agreement with thermodynamic data for CaTiO3 reported in the literature. For Ca4Ti3O10 Gibbs free energy of formation obtained in this study differs significantly from that reported by Taylor and Schmalzried at T = 873 K. For Ca3Ti2O7 experimental measurements are not available in the literature for direct comparison with the results obtained in this study. Nevertheless, the standard entropy for Ca3Ti2O7 at T = 298.15 K estimated from the results of this study using the Neumann–Koop rule is in fair agreement with the value obtained from low-temperature heat capacity measurements.  相似文献   

2.
《Solid State Sciences》2007,9(9):817-823
Double layered La2−2xCa1+2xMn2O7 manganite has been synthesized using solid state reaction method for different dopant concentration x = 0.0–0.5. Their temperature dependence of resistivity (ρ  T) has been studied in the semiconducting region. The experimental observations were compared with the theoretically simulated temperature dependence of resistivity curves based on nearest neighbour hopping, Efros–Shklovskii variable range hopping, and Mott's 2D and 3D variable range hopping models. From the analysis of these results, Mott's 3D variable range hopping mechanism seemed to be most suitable mechanism describing the semiconducting behaviour of these double layered manganites. Temperature dependent activation energy also supported the Mott's 3D variable range hopping model. The Mott's activation energy was found to vary with the dopant concentration x and it showed a minimum value for x = 0.3.  相似文献   

3.
Tetragonal copper ferrite (CuFe2O4) nanofibers were fabricated by electrospinning method using a solution that contained poly(vinyl pyrrolidone) (PVP) and Cu and Fe nitrates as alternative metal sources. The as-spun and calcined CuFe2O4/PVP composite samples were characterized by TG-DTA, X-ray diffraction, FT-IR, and SEM, respectively. After calcination of the as-spun CuFe2O4/PVP composite nanofibers (fiber size of 89 ± 12 nm in diameter) at 500 °C in air for 2 h, CuFe2O4 nanofibers of 66 ± 13 nm in diameter having well-developed tetragonal structure were successfully obtained. The crystal structure and morphology of the nanofibers were influenced by the calcination temperature. After calcination at 600 and 700 °C, the nature of nanofibers changed which was possibly due to the reorganization of the CuFe2O4 structure at high temperature, and a fiber structure of packed particles or crystallites was prominent. Crystallite size of the nanoparticles contained in nanofibers increases from 7.9 to 23.98 nm with increasing calcination temperature between 500 and 700 °C. Room temperature magnetization results showed a ferromagnetic behavior of the calcined CuFe2O4 samples, having their specific saturation magnetization (Ms) values of 17.73, 20.52, and 23.98 emu/g for the samples calcined at 500, 600, and 700 °C, respectively.  相似文献   

4.
Microwave dielectric powder Ba(Ca1/3Nb2/3)O3 with high B-site cation ordering was synthesized by the molten salt method. Neutron powder diffraction (NPD) and Raman scattering spectra were introduced to investigate the variable ordering degree during the sintering process. It was revealed that the as-synthesized Ba(Ca1/3Nb2/3)O3 powder had a nearly completely ordered structure, and the sintered Ba(Ca1/3Nb2/3)O3 presented a bit higher ordering degree based on the detailed quantitative NPD Rietveld full profile fitting. The complete Raman mode assignment for the Ba(Ca1/3Nb2/3)O3 was presented. The phonon bands could also confirm the order–disorder structural model and increasing ordering degree with the increasing sintering temperature. Final microwave dielectric measurements on sintered samples showed the present compound to tailor other dielectric materials for microwave applications with the dielectric properties of ?r = 47.11, and Qf = 1389 GHz, and τf was about 113 ppm/°C.  相似文献   

5.
The liquidus of the binary system (Cu2O + CaO) has been experimentally investigated over the temperature range from (1050 to 1500) °C in air. The liquidus has been quantified by the equilibration/quench/analysis technique. Equilibrated specimens were quenched in brine solution of 10 wt% NaCl. Specimens were then examined by Energy-Dispersive X-ray Spectroscopy (EDS) and Electron probe micro-analyzer (EPMA) to quantify liquid chemical compositions. This work reveals that the solubility of CaO in the liquid phase of the binary (Cu2O + CaO) at higher temperatures is lower than previously reported, and the deviation systematically increases with a corresponding increase in temperature. This is predominant at temperatures between (1300 and 1500) °C where a deviation of up to 5 wt% in CaO solubility is observed. The solubility of Cu2O in liquid phase for the cuprite saturated section of the binary however is consistent with all the previous authors.  相似文献   

6.
High-temperature heat capacity measurements were obtained for Cr2O3, FeCr2O4, ZnCr2O4, and CoCr2O4 using a differential scanning calorimeter. These data were combined with previously available, overlapping heat capacity data at temperatures up to 400 K and fitted to 5-parameter Maier–Kelley Cp(T) equations. Expressions for molar entropy were then derived by suitable integration of the Maier–Kelley equations in combination with recent S(298) evaluations. Finally, a database of high-temperature equilibrium measurements on the formation of these oxides was constructed and critically evaluated. Gibbs free energies of Cr2O3, FeCr2O4, and CoCr2O4 were referenced by averaging the most reliable results at reference temperatures of (1100, 1400, and 1373) K, respectively, while Gibbs free energies for ZnCr2O4 were referenced to the results of Jacob [K.T. Jacob, Thermochim. Acta 15 (1976) 79–87] at T = 1100 K. Thermodynamic extrapolations from the high-temperature reference points to T = 298.15 K by application of the heat capacity correlations gave ΔfG(298) = (−1049.96, −1339.40, −1428.35, and −1326.75) kJ · mol−1 for Cr2O3, FeCr2O4, ZnCr2O4, and CoCr2O4, respectively.  相似文献   

7.
《Vibrational Spectroscopy》2007,43(2):284-287
Geometrically frustrated pyrochlore Y2Ru2O7, which shows a spin-glass-like transition at TG  80 K, were investigated by temperature-dependent Raman scattering. Three discernable phonons appear around 315, 410, and 510 cm−1 without any abrupt change in the number of Raman active modes within the temperature range of 10–300 K. Fitting each phonon with Lorentz oscillators, we analyzed the effects of temperature on the phonon frequencies and the linewidths. The temperature-dependence of the mode near 510 cm−1 shows abnormal behavior below TG, while the other two phonons follow the usual thermal effect of lattice vibration. This behavior can be understood in terms of spin–phonon coupling. Considering the atomic modulations of each phonon mode, it is conjectured that the 510 cm−1 phonon mode is isotropically coupled to the spin degree of freedom, while the other modes are not.  相似文献   

8.
A new molybdenum complex (C4H12N2)2[(MoV2O4)(MoVIO4)(C2O4)2]·2H2O, was solvothermally synthesized and characterized by single-crystal X-ray diffraction. The structure of the compound consists of oxalate acid-coordinated mixed-valent [MoV2O4][MoVIO4] helical chains and protonated piperazine cations. The helical chains are built up from the [MoV2O4] units and [MoVIO4] tetrahedral. The central axis about helical chain is a 2-fold screw axis. The compound crystallizes in the space group P21/n of monoclinic system with a = 11.396(2) Å, b = 14.107(3) Å, c = 15.805(3) Å, β = 102.09(3)°, V = 2484.6(9) Å3, Z = 4. Other characterizations by elemental analysis, IR, and thermal analysis for this compound are also given.  相似文献   

9.
The molar heat capacities of GeCo2O4 and GeNi2O4, two geometrically frustrated spinels, have been measured in the temperature range from T=(0.5 to 400) K. Anomalies associated with magnetic ordering occur in the heat capacities of both compounds. The transition in GeCo2O4 occurs at T=20.6 K while two peaks are found in the heat capacity of GeNi2O4, both within the narrow temperature range between 11.4<(T/K)<12.2. Thermodynamic functions have been generated from smoothed fits of the experimental results. At T=298.15 K the standard molar heat capacities are (143.44 ± 0.14) J · K−1 · mol−1 for GeCo2O4 and (130.76 ± 0.13) J · K−1 · mol−1 for GeNi2O4. The standard molar entropies at T=298.15 K for GeCo2O4 and GeNi2O4 are (149.20 ± 0.60) J · K−1 · mol−1 and (131.80 ± 0.53) J · K−1 · mol−1 respectively. Above 100 K, the heat capacity of the cobalt compound is significantly higher than that of the nickel compound. The excess heat capacity can be reasonably modeled by the assumption of a Schottky contribution arising from the thermal excitation of electronic states associated with the CO2+ ion in a cubic crystal field. The splittings obtained, 230 cm−1 for the four-fold-degenerate first excited state and 610 cm−1 for the six-fold degenerate second excited state, are significantly lower than those observed in pure CoO.  相似文献   

10.
Solubility isotherms of the ternary system (LiCl + CaCl2 + H2O) were elaborately determined at T = (283.15 and 323.15) K. Several thermodynamic models were applied to represent the thermodynamic properties of this system. By comparing the predicted and experimental water activities in the ternary system, an empirical modified BET model was selected to represent the thermodynamic properties of this system. The solubility data determined in this work at T = (283.15 and 323.15) K, as well as those from the literature at other temperatures, were used for the model parameterization. A complete phase diagram of the ternary system was predicted over the temperature range from (273.15 to 323.15) K. Subsequently, the Gibbs free energy of formation of the solid phases CaCl2 · 4 H2O(s), CaCl2 · 2 H2O(s), LiCl · 2H2O(s), and LiCl · CaCl2 · 5H2O(s) was estimated and compared with the literature data.  相似文献   

11.
Standard values of Gibbs free energy, entropy, and enthalpy of Na2Ti6O13 and Na2Ti3O7 were determined by evaluating emf-measurements of thermodynamically defined solid state electrochemical cells based on a Na–β″-alumina electrolyte. The central part of the anodic half cell consisted of Na2CO3, while two appropriate coexisting phases of the ternary system Na–Ti–O are used as cathodic materials. The cell was placed in an atmosphere containing CO2 and O2. By combining the results of emf-measurements in the temperature range of 573⩽T/K⩽1023 and of adiabatic calorimetric measurements of the heat capacities in the low-temperature region 15⩽T/K⩽300, the thermodynamic data were determined for a wide temperature range of 15⩽T/K⩽1100. The standard molar enthalpy of formation and standard molar entropy at T=298.15 K as determined by emf-measurements are ΔfHm0=(−6277.9±6.5) kJ · mol−1 and Sm0=(404.6±5.3) J · mol−1 · K−1 for Na2Ti6O13 and ΔfHm0=(−3459.2±3.8) kJ · mol−1 and Sm0=(227.8±3.7) J · mol−1 · K−1 for Na2Ti3O7. The standard molar entropy at T=298.15 K obtained from low-temperature calorimetry is Sm0=399.7 J · mol−1 · K−1 and Sm0=229.4 J · mol−1 · K−1 for Na2Ti6O13 and Na2Ti3O7, respectively. The phase widths with respect to Na2O content were studied by using a Na2O-titration technique.  相似文献   

12.
Ambient pressure CaV2O4 and high-pressure NaV2O4 crystallize in the CaFe2O4 structure type containing double chains of edge-sharing VO6 octahedra. Recent measurements on NaV2O4 reveal low-dimensional metallicity and evidence of half-metallic ferromagnetism. In contrast, CaV2O4 is an antiferromagnetic insulator. To explore the evolution of these ground-state behaviors, we have prepared a series of Ca-doped NaV2O4 compounds with the formula Na1?xCaxV2O4 (x = 0–1) using high-pressure synthesis. Samples at the Na end (x = 0–0.07) show a broad antiferromagnetic transition in the 120–160 K range in accordance with earlier reports. Transport measurements show an insulator–metal transition at x  0.2. Samples with higher Ca concentrations (x = 0.4–0.7) exhibit a metal–insulator transition around 150 K. The results for the Na1?xCaxV2O4 solid solution is discussed in comparison to existing studies at the Ca- and Na-rich ends.  相似文献   

13.
The low-temperature heat capacity of NiAl2O4 and CoAl2O4 was measured between T = (4 and 400) K and thermodynamic functions were derived from the results. The measured heat-capacity curves show sharp anomalies peaking at around T = 7.5 K for NiAl2O4 and at T = 9 K for CoAl2O4. The exact cause of these anomalies is unknown. From our results, we suggest a standard entropy for NiAl2O4 at T = 298.15 K of (97.1 ± 0.2) J · mol?1 · K?1 and for CoAl2O4 of (100.3 ± 0.2) J · mol?1 · K?1.  相似文献   

14.
《Solid State Sciences》2007,9(2):205-212
SrSi2O2N2 is an important host lattice for Eu2+ doped phosphors. Its crystal structure (space group P1, a = 7.0802(2) Å, b = 7.2306(2) Å, c = 7.2554(2) Å, α = 88.767(3)°, β = 84.733(2)°, γ = 75.905(2)° and V = 358.73(2) Å3, Z = 4) is isotypic with EuSi2O2N2: highly condensed silicate layers are separated by Sr2+. The samples are characterized by pronounced real structure effects owing to pseudosymmetry of partial structures. Polysynthetic twinning with domains of various sizes is ubiquitous and oriented intergrowth of domains with different orientations has also been observed and analysed in detail by means of electron diffraction and high-resolution electron microscopy. These effects also affect the X-ray powder pattern and were taken into account in a Rietveld refinement.  相似文献   

15.
BaBiNb2O9 (BBN) powders in the nanometer range were prepared by chemical precursor decomposition method (CPD). TG–DTA showed that precursor sample got freed from organic contaminants at 575 °C. XRD showed that a single phase with the layered perovskite structure of BBN was formed after calcining at 600 °C. No intermediate phase was found during heat treatment at and above 600 °C. The crystallite size (D) and the effective strain (η) were found to be 26 nm and 0.000867, respectively, while the particle size obtained from TEM was 28 ± 2 nm. SEM revealed that the average grain size after sintering at 900 °C for 4 h was ∼1.67 μm. A relative density of ∼93% was obtained using a two-step sintering process at moderate pressure. Dielectric and ferroelectric properties were investigated in the temperature range 50–500 °C and frequencies from 1 kHz to 5 MHz. Strong dispersion of the complex relative dielectric constant was observed including typical relaxor features such as shift of permittivity maximum with frequency and broadening of the peak maximum. The high dielectric constant of 545 measured at 100 kHz and other properties of BBN ceramics were compared to that of BBN prepared by other conventional methods and found to be superior.  相似文献   

16.
Glasses with the compositions 50.9 SiO2 · 20.8 Al2O3 · (20.8 ? x) MgO· × ZnO · 3.7 TiO2 · 3.7 ZrO2 with x = 0, 2.3, 4.6 and 9.3 were annealed at temperatures in the range from 850 to 1100 °C. Depending on temperature, high- or low-quartz solid solutions, magnesium aluminosilicate, mullit and spinel precipitated. These glass–ceramics exhibit excellent mechanical properties and are potential candidates for applications in micromechanics or as hard disc substrate.The larger the ZnO concentration, the lower is the glass transition temperature. Also microhardnesses and Young’s moduli increased with increasing ZnO concentration. The nucleation temperature was of minor importance. To achieve good mechanical properties, the initially formed high-quartz phase must transform to the corresponding low-quartz phase. This occurs if the quartz phase contains only minor MgO or ZnO concentrations, which can be achieved by increasing the annealing times or temperature. Then MgO, ZnO and Al2O3 occur as separate spinel or gahnite phase.  相似文献   

17.
Polycrystalline garnet ferrites Dy3?xNixFe5O12 with varying Ni substitutions (x = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5) have been prepared by the standard ceramic technique and their crystalline structures were investigated by using X-ray diffraction and IR spectroscopy. The X-ray diffraction analysis showed that all samples have a single cubic garnet phase. The materials prepared are identified by infrared rays which indicate the presence of three absorption bands ν2, ν3 and ν4 which represent the tetrahedral, octahedral and dodecahedral sites respectively which characterize the garnet ferrite.The dielectric constant (?), and dielectric loss (tan δ) of the prepared samples were measured at 1 kHz in the temperature range 300–700 K. The dielectric constant (?), and dielectric loss (tan δ) are functions of temperature.The initial magnetic permeability has been studied at different temperatures. The initial magnetic permeability (μi) increases gradually with increasing temperature and then drops suddenly at a certain temperature Tc.  相似文献   

18.
The forming of surface species during the adsorption of carbon monoxide (CO) and CO/O2 on a CeO2/Co3O4 catalyst was investigated by in situ Fourier transform infrared (FT-IR) spectroscopy and temperature programmed desorption-mass spectroscopy (TPD-MS). When CO was adsorbed on the CeO2/Co3O4 catalyst, two types of surface species were distinguishable at room temperature: carbonate and bicarbonate. Surface carbonate was adsorbed on the cerium and cobalt, while the surface bicarbonate absorbed on the CeO2/Co3O4 catalyst at 1611, 1391, 1216 and 830 cm−1. Furthermore, the TPD-MS profiles revealed that the CeO2/Co3O4 catalyst showed a greater amount of CO2 than CO at 373 K. The CO desorption from the CeO2/Co3O4 catalyst with increasing temperature showed that the order of thermal stability was surface bicarbonate < surface carbonate < interface carbonate species. Interestingly, the residual carbonate species could remain on the interface up to 473 K. The results revealed that surface bicarbonate could promote the conversion of CO into CO2 for CO oxidation below 50 K.  相似文献   

19.
The heat capacities of two iron phosphates, Fe(PO3)3 and Fe2P2O7, have been measured over the temperature range from (2 to 300) K using the heat capacity option of a Quantum Design Physical Property Measurement System (PPMS). A phase transition related to magnetic ordering has been found in the heat capacity at T = 8.76 K for Fe(PO3)3 and T = 18.96 K for Fe2P2O7, which are comparable with literature values from magnetic measurements. By fitting the experimental heat capacity values, the thermodynamic functions, magnetic heat capacities, and magnetic entropies have been determined. Additionally, theoretical fits at low temperatures suggest that Fe2P2O7 has an anisotropic antiferromagnetic contribution to the heat capacity and a large linear term likely caused by oxygen vacancies. Further data fitting in a series over widened temperature regions found that this linear term exists only below 15 K and disappears gradually from (15 to 17) K.  相似文献   

20.
《Polyhedron》2005,24(16-17):2557-2561
The single-crystal X-ray structure of the single-molecule magnet [Mn12O12(O2CC6H4-2-CH3)16(H2O)4] · CH2Cl2 · 2H2O (complex 1) is reported. Complex 1 is a new example of a “Jahn–Teller isomer”, since it has two Mn(III) ions with abnormally oriented Jahn–Teller elongation axes. Complex 1 has a lower activation energy (Ueff = 29 K) for magnetization reversal relative to other reported [Mn12O12] type molecules (e.g., Ueff = 70 K for Mn12Ac). Single-crystal low temperature magnetization measurements are reported that confirm that complex 1 is a single-molecule magnet. High-field electron paramagnetic resonance measurements were performed on a single crystal to give the spin Hamiltonian parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号