首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 835 毫秒
1.
针对水下环境影响导致DVL回波个数小于4,常规惯性/DVL组合导航无法进行,对DVL的回波信息利用不充分的问题,提出了一种基于波束域信息的SINS/DVL组合导航方法.直接将DVL测量的波束域信息与惯导系统速度转化得到的频移差值作为观测量,考虑惯导以及DVL的多项误差,建立基于频移观测量的卡尔曼滤波模型,实现对惯导系统...  相似文献   

2.
针对传统捷联惯性导航系统(SINS)/声学多普勒测速仪(DVL)组合导航系统初始对准过程中模型不精确引起的对准效率低的问题,提出了一种基于状态变换的SINS/DVL初始对准方法。与传统的SINS/DVL匹配模式不同,所提方案采用了基于载体系速度信息的匹配模式,建立了基于载体系速度误差的SINS误差方程,提高了系统误差模型精度。并考虑SINS和DVL之间的安装关系,重新建立了SINS/DVL初始对准系统及量测方程。最后仿真及试验结果表明,所提出的基于状态变换的DVL辅助SINS初始对准方法能在粗对准不够理想且存在安装偏差角条件下完成高精度的初始对准,提高了初始对准的鲁棒性能,同时在对准过程中能够保持高精度的位置信息。  相似文献   

3.
针对因水下环境的特殊性AUV难以实现精准导航的问题,设计了一种基于SINS/LBL紧组合的AUV水下导航定位系统。该系统具有定位精度高、鲁棒性好等优点,系统由SINS、LBL、DVL和MCP组成,根据LBL的TDOA定位原理建立了LBL斜距差模型,给出了SINS/LBL/DVL/MCP的状态方程和量测方程,利用集中kalman滤波器对组合导航系统进行最优估计。在相同的仿真条件下,对SINS/LBL松组合、紧组合进行了软件仿真,仿真结果表明:相对于松组合系统,基于SINS/LBL的紧组合系统导航精度更高,尤其是在由于AUV运动或受到外界干扰导致可用信号的水听器不足四个时,紧组合系统的可靠性和容错性更高。  相似文献   

4.
基于加性四元数的SINS/CNS非线性紧组合方法   总被引:1,自引:0,他引:1  
针对SINS/CNS组合导航系统中的非线性特性,提出了基于加性四元数的SINS/CNS非线性紧组合方法.从捷联惯性导航系统误差非线性建模和天文角度非线性量测两个方面出发,推导了基于加性四元数的捷联惯导误差传播特性,构建了天文导航的非线性量测模型,采用二阶插值滤波算法实现了SINS和CNS的非线性信息融合.计算机仿真显示,SINS/CNS非线性紧组合方法充分考虑系统的非线性特性,机动情况下的峰值误差较小,相对线性紧组合方法导航精度提高约15%.  相似文献   

5.
多普勒计程仪(DVL)工作在未知、复杂的水下环境中时,各个波束的有效性不是都能保证,偶尔会不可避免地产生异常信息,导致水下组合导航系统的定位精度下降。针对水下航行器长航时定位中可能出现的DVL野值和短时失效,提出一种用于SINS/DVL组合导航系统的DVL异常信息处理机制,一方面采用滑动窗卡方检测方法,消除野值对导航精度的影响;另一方面采用基于稀疏贝叶斯理论的相关向量机算法建立DVL速度回归预测模型,在DVL短时失效时输出速度信息避免SINS误差积累。基于长江试验的实测数据,对比了所提方法与DVL失效时仅隔离DVL、采用相关向量机模型预测但未处理野值以及采用支持向量机模型预测并处理野值三种方法,所提方法分别提升了68.8%、67.3%和22.6%的定位精度,可以更准确预测DVL速度输出并且避免野值导致的滤波精度下降问题,验证了该DVL异常信息处理机制的有效性和鲁棒性。  相似文献   

6.
针对捷联惯性导航系统(SINS)/多普勒计程仪(DVL)组合导航系统工作于水跟踪模式条件下的高精度定位需求,提出一种考虑洋流影响的SINS/DVL组合导航算法。分析了DVL水跟踪模式下洋流速度对组合导航精度的影响,基于速度匹配组合导航的方式提出了SINS/DVL组合导航系统设计方案,当DVL切换到水跟踪模式后,利用Kalman滤波器对洋流速度进行实时估计,从而能够有效提高DVL仅对水输出时系统的组合导航定位精度。仿真和水上船载试验结果表明,本文提出的考虑洋流速度影响的SINS/DVL组合导航算法是有效的和可行的。  相似文献   

7.
针对可用星数目小于4情况下,SINS/GPS松散组合导航必须转为纯惯性状态,无法解决纯惯性导航参数误差发散的问题,提出了以导航星伪距和伪距率为观测量的紧耦合SINS/GPS组合导航方案.建立了紧耦合系统的数学模型,搭建了硬件系统,并应用于工程实践.车载试验结果表明:当可用星数目小于4时,紧耦合系统定位的纬度误差、经度误...  相似文献   

8.
为提高水下SINS/DVL组合导航系统的精度,建立了捷联惯性导航系统(SINS)的非线性误差模型,并建立多普勒测速仪的误差方程,以SINS为主导航设备建立SINS/DVL组合导航系统模型。设计了5阶球面最简相径容积卡尔曼滤波器,采用了球面最简相径采样规则改进容积卡尔曼滤波,并应用于SINS/DVL组合导航系统中。通过数学平台仿真验证了5阶球面最简相径容积卡尔曼滤波方法有效性,仿真结果表明:该方法能够有效提高SINS/DVL组合导航系统的精度,且稳定性好。  相似文献   

9.
针对复杂环境下因量测噪声统计特性时变及量测粗差而引起的组合导航精度下降的问题,提出了一种基于M估计的抗差自适应多模型组合导航算法。所提算法突破了传统交互式多模型算法定结构的限制,凭借所提出的模型集自适应调整策略,能够快速估计量测噪声统计特性,并利用模型概率信息对模型转移概率矩阵进行实时修正;引入了基于M估计的抗差Kalman滤波算法,以提高滤波抗差能力。以SINS/DVL组合导航系统为例,通过仿真和长江试验对所提算法进行了验证,结果表明所提算法有效降低了量测噪声统计特性时变及量测粗差对滤波精度的影响。在长江试验中,所提算法相比AIMM算法,东、北向速度误差和位置误差的均方根误差分别下降了44%、36%和41%、53%,水平定位精度提升了约45.9%,定位精度提升显著。  相似文献   

10.
针对船用捷联惯性导航系统(SINS)、北斗(BD)、多普勒(DVL)和天文导航(CNS)信息更新频率不同以及可用性随环境动态改变的多源导航信息融合问题,提出基于增量平滑因子图的船用导航系统信息融合及容错算法。建立SINS、BD、DVL和CNS的量测因子节点模型,并通过利用所有时刻量测信息,以最大后验概率估计方法进行融合架构的构建;插入新的量测因子节点后,识别并更新受新量测因子影响的部分导航状态变量节点,利用因子图增量平滑算法计算导航状态的最大后验估计值;同时设计基于卡方检验的信息容错算法进行故障检测。数值仿真及半实物车载试验表明所提算法具有即插即用特性,能够实现不同信息更新频率导航设备的有效融合,融合精度与联邦滤波的定位精度相当;在导航设备发生故障后,所设计的容错算法能够有效识别并隔离故障。  相似文献   

11.
针对远程自主水下航行器的远程性和自主性,加之水下环境复杂,其导航和定位的精度很难保证的特点,设计一种基于相控阵DVL的自适应滤波的SINS/DVL组合导航算法。基于相控阵DVL特点,推导了速度观测方程,并对降维滤波器进行了设计和时空误差进行修正。采用50型激光陀螺研制出工程样机,并进行了河试试验和海试试验,试验结果表明采用自适应滤波算法能够进一步提高SINS/DVL自主导航的精度,并且SINS/DVL自主导航精度优于2‰D(D为航程),为远程水下航行器提供一种自主好、精度高、价格适中的导航手段。  相似文献   

12.
针对多普勒测速仪(DVL)辅助捷联惯导系统行进间对准时易受DVL量测噪声的影响,提出一种基于参数识别的SINS/DVL初始对准方法。首先,建立了基于DVL辅助的SINS行进间初始对准观测矢量模型,分析了DVL量测噪声对观测矢量的影响;然后,研究了观测矢量变化规律,建立了观测矢量参数识别模型,利用建立的参数识别模型,设计了基于自适应卡尔曼滤波的参数识别算法,并对观测矢量进行了重构,减小了DVL量测噪声对观测矢量的影响;最后,设计了仿真与跑车实验。实验结果表明,所提出的参数识别算法可以有效抑制DVL量测噪声对初始对准结果的影响。相较于传统方法,在载体运动条件下实现对准误差标准差小于0.1°。  相似文献   

13.
为了提高捷联惯性组合导航系统的可靠性,将聚类支持向量机(C-SVM)应用于故障诊断技术,基于SINS/DVL/MCP/TAN组合导航系统建立了C-SVM故障诊断模型,将SINS/MCP、SINS/TAN和SINS/DVL三个子滤波器的相关特征量(残差值和状态检测函数)作为样本对C-SVM进行训练,并应用交叉验证法选择参数组.根据训练好的C-SVM模型分别对三个传感器进行故障诊断,若发生故障则屏蔽相应传感器的输出信息,利用其余的传感器进行重构.仿真结果表明,C-SVM的故障诊断正确率较高,特别是当训练样本数有限的情况下也能够达到较好的性能,克服了传统的神经网络在训练样本数较少时推广性能不足的问题,因此是一种理想的故障诊断技术.  相似文献   

14.
针对ROV在大深度水下工作环境中由于DVL刻度因数误差和安装角度误差引起导航精度降低的问题,提出了一种基于罗经/DVL/USBL组合导航系统的DVL误差参数在线标定算法。分析并建立了DVL误差参数向组合导航定位误差的传播模型,将DVL的刻度因数误差和安装角度误差引入基于USBL位置观测的卡尔曼滤波组合导航迭代中,使ROV在获得组合导航输出的同时实现DVL的在线标定。仿真与海试结果表明,所提出的算法能够在输出高精度组合导航位置的同时进行DVL的有效标定,在理想条件下,组合导航终点定位误差仿真结果能够达到0.01%航程,具有较高的导航定位精度、DVL误差参数估计精度和算法稳定性。  相似文献   

15.
信息融合技术在INS/GPS/DVL组合导航中的应用研究   总被引:2,自引:2,他引:2  
为克服某船载导航系统不能满足长时间高精度导航定位需要的缺点,提出了一种基于信息融合技术的INS/GPS/DVL联邦滤波器组合导航方案.介绍了INS/GPS/DVL联邦滤波器的工作模式,在建立INS、GPS和DVL误差模型的基础上,推导了滤波器的组合形式,并详细阐述了该联邦滤波器的融合算法.通过计算机仿真技术分析了该组合导航系统的性能,仿真证明了所设计的联邦滤波器可以充分利用各种导航传感器的信息,提高导航系统的精度,比单独的惯性导航系统能提供更为精确的位置、速度和姿态信息,有效地提高了导航系统的综合能力.  相似文献   

16.
为适应自主驾驶车辆的高精度、高频率与高可靠性的导航要求,提出了一种机器视觉/数字地图/CP-DGPS共同辅助SINS的智能车辆组合导航方法,建立了组合导航系统的滤波模型。该滤波模型的量测信息不仅包括GPS与SINS形成的位置与姿态观测信息,还包括机器视觉/数字地图/SINS形成的横向偏差观测信息。通过对SINS的多重冗余辅助,使得导航系统具备容错能力。仿真结果表明,该组合导航系统能为智能车辆提供其空间位置、速度、加速度与姿态角等众多导航信息,并具有100Hz的高频输出、厘米级的导航精度和容错性能,当GPS较长时间中断时,通过SINS/视觉/数字地图的组合仍能为智能车辆提供可靠的导航数据。  相似文献   

17.
针对AUV水下定位系统存在的缺陷,设计了一种基于SINS/DVL与LBL交互辅助的AUV水下导航定位系统。系统由安装在AUV上的SINS、DVL、发声源及布放在海底已知位置的LBL水声定位基阵组成。SINS/DVL估计的位置信息既辅助到达时延差估计,修正声速,提高LBL定位估计的精度,又作为Taylor级数展开迭代法所需的迭代初始值,辅助LBL估计AUV位置。然后利用LBL系统估计的位置信息校正SINS/DVL的累积误差。仿真结果表明,当AUV靠近LBL基阵时,与传统方法相比,该系统能更有效地修正SINS/DVL系统的累积误差,使定位误差小于2 m,适用于水下定位导航。  相似文献   

18.
水下自主潜航器(AUV)在水下勘测过程中常采用定期上浮的方式利用卫星定位信息(GNSS)校正惯性/多普勒测速仪(SINS/DVL)组合导航造成的位置误差,并通过平滑算法校正之前计算的水下航迹。针对AUV上浮前的水下航迹矫正问题,提出一种基于计算地理坐标系的状态变换扩展卡尔曼平滑算法(STEKF-RTS)。首先推导状态变换扩展卡尔曼滤波器的系统误差状态方程,并分别以GNSS信息和DVL速度为观测信息构建量测方程,以此系统模型进行前向滤波。完成前向滤波后,即潜航器上浮GNSS校正完成后,采用RTS平滑算法对水下航行阶段的航迹进行修正。实验结果表明,STEKF相较于EKF能减缓位置误差积累,STEKF-RTS相比EKF-RTS平滑算法能够进一步有效校正航线误差,1 h上浮时间间隔情况下,勘测航迹精度可控制在0.5%D以内。  相似文献   

19.
针对如何快速精确标定出多普勒计程仪(DVL)的比例因子误差以及DVL和捷联惯导(SINS)之间的安装误差角的问题,提出了一种基于梯度下降四元数估计理论的位置观测DVL标定方法。以SINS/DVL/GNSS为组合导航方式,利用多普勒测速原理标定出比例因子误差,通过构造位置矢量观测方程,采用梯度下降四元数方法得到安装误差角的标定结果。通过仿真及试验验证了所提出方法的有效性,并与卡尔曼滤波标定算法进行了比较,结果表明:比例因子估计值误差的最终标定结果在0.06%以内,安装角估计误差最终标定结果在0.05°以内,具有较好的工程应用价值。  相似文献   

20.
为实现无人机高精度高可靠性导航,提出了一种以捷联惯性导航系统(SINS)为主,以地形辅助导航(TAN)、大气数据系统(ADS)及电子磁罗盘(MCP)为辅的组合导航方式。通过分析SINS、TAN、ADS及MCP单一系统的工作原理及输出误差模型,构建了SINS/TAN、SINS/ADS及SINS/MCP系统的状态方程及观测方程,最后采用联邦卡尔曼滤波方式实现了对各组合系统的信息融合。仿真数据对比表明:SINS/TAN系统位置误差较小,但航向误差较大;SINS/ADS系统速度误差较小且比较稳定,但位置误差随时间发散;SINS/MCP系统航向误差方差可达0.3783’,但其位置和速度估计精度不理想;而SINS/TAN/ADS/MCP系统能够克服上述不足,实现所有导航参数误差估计的高精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号