首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 864 毫秒
1.
Au改性TiO2纳米复合物对人结肠癌细胞的光催化杀伤作用   总被引:2,自引:0,他引:2  
许娟  陈智栋  孙毅  陈春妹  江志裕 《化学学报》2008,66(10):1163-1167
提出了通过TiO2表面修饰纳米Au的方法来提高纳米TiO2光催化杀伤癌细胞的效率. 采用化学还原法合成了Au改性的TiO2 (Au/TiO2)纳米复合物, 并研究了不同掺杂量(1 wt%, 2 wt%, 4 wt%)的Au/TiO2对人结肠癌LoVo细胞的光催化杀伤效应. 结果显示, Au的掺杂大大地提高了TiO2纳米粒子光催化杀伤结肠癌LoVo细胞的效率, 而且Au掺杂量的高低影响Au/TiO2光催化杀伤癌细胞的效率, 掺金量为2%的Au/TiO2对结肠癌LoVo细胞具有最高的光催化杀伤效率. 在光强为1.8 mW/cm2的紫外灯(λmax=365 nm)下光照110 min, 50 μg/mL掺金量为2%的Au/TiO2能够杀死所有的癌细胞, 而同样浓度的TiO2只能杀死70%的癌细胞.  相似文献   

2.
An investigation of hydrogen production with a series of Au/TiO2 photocatalysts reveals that the Au nanoparticles play different roles depending on the wavelength of the light irradiation. Under visible‐light irradiation, the photoactivity is primarily controlled by the intensity of the Au surface plasmon band, whereas under UV irradiation the Au nanoparticles act as co‐catalysts with TiO2.  相似文献   

3.
TiO2 -Au aerogels containing different amounts of gold nanoparticles of different sizes (5 and 16 nm) were successfully synthesized using a sol-gel procedure, and were tested for salicylic acid photodegradation under UV irradiation. The structure and morphology of the obtained materials were investigated using X-ray diffraction, transmission electron microscopy, and N2 adsorption-desorption measurements. UV-Vis spectroscopy was used to study the optical properties. The effects of the gold nanoparticles on the TiO2 crystallization process were twofold, as follows: (i) the number of crystallized zones was strongly related to the concentration of the gold nanoparticles, and (ii) the smaller gold particles increased the time taken for the crystallization of the samples. It was found that the noble metal-doped samples exhibited higher degradation rates compared with bare titania. It was found that the most active photocatalyst in each studied system was the sample with the highest concentration of gold nanoparticles. Additionally, the highest degradation rate value was obtained with the smallest Au nanoparticles (46.4 10-3 μmol/(L·s).  相似文献   

4.
Au/TiO2/graphene composite was synthesized by the combination of electrostatic attraction and photo-reduction method. In the composite, graphene sheets act as an adsorption site for dye molecules to provide a high concentration of dye near to the TiO2 and Au nanoparticles (NPs), and work as an excellent electron transporter to separate photoinduced e ?/h + pairs. Under UV irradiation, photogenerated electrons of TiO2 are transferred effectively to Au NPs and graphene sheets, respectively, retarding the recombination of electron–hole pairs. Under visible light irradiation, the Au NPs are photo-excited due to the surface plasmon resonance effect, and charge separation is accomplished by the interfacial electron injection from the Au NPs to the conduction band of TiO2 and then transfer further to graphene sheets. As a result, compared with pure TiO2, Au/TiO2/graphene composite exhibited much higher photocatalytic activity for degradation of methylene blue under both UV and visible light irradiation, based on the synergistic effect of Au, graphene in contact with TiO2, allowing response to the visible light, effective separation of photoinduced charges, and better adsorption of the dye molecules.  相似文献   

5.
This study reports on successful photodynamic inactivation of planktonic and biofilm cells of Candida albicans using Rose Bengal (RB) in combination with biogenic gold nanoparticles synthesized by the cell‐free filtrate of Penicillium funiculosum BL1 strain. Monodispersed colloidal gold nanoparticles coated with proteins were characterized by a number of techniques including SEM–EDS, TEM, UV–Vis absorption and fluorescence spectroscopy, as well as Fourier transform infrared spectroscopy to be 24 ± 3 nm spheres. A Xe lamp (output power of 20mW, delivering intensity of 53 mW cm?2) was used as a light source to study the effects of RB alone, the gold nanoparticles alone and the RB‐gold nanoparticle mixture on the viability of C. albicans cells. The most effective reduction in the number of planktonic cells was found after 30 min of Xe lamp light irradiation (95.4 J cm?2) and was 4.89 log10 that is 99.99% kill for the mixture of RB with gold nanoparticles compared with 2.19 log10 or 99.37% for RB alone. The biofilm cells were more resistant to photodynamic inactivation, and the highest effective reduction in the number of cells was found after 30 min of irradiation in the presence of the RB–gold nanoparticles mixture and was 1.53 log10, that is 97.04% kill compared with 0.6 log10 or 74.73% for RB. The probable mechanism of enhancement of RB‐mediated photodynamic fungicidal efficacy against C. albicans in the presence of biogenic gold nanoparticles is discussed leading to the conclusion that this process may have a multifaceted character.  相似文献   

6.
Three-dimensional (3D) TiO2 hollow structures have attracted much attention due to their unique properties. However, the large bandgap of (3.2 eV) results in the fact that anatase TiO2 photocatalyst can only be excited by UV light, which only accounts for 3–5% of the solar energy. On considering that nobel metallatic nanomaterials can harvest visible light due to surface plasmon resonance (SPR) effect, in this paper, three kinds of Au nanoparticles with different morphologies, namely Au nanospheres (Au-NSs), Au nanorods (Au-NRs) and Au nanopentogons (Au-NPs) were prepared and used as photosensitizers to modified TiO2 hollow nanoboxes (TiO2-HNBs), aiming to explore high efficient visible-light-responsive photocatalyst. The photoreacitivty of Au/TiO2-HNBs was evaluated by photoctalytic oxidation of Rhodamine B (RhB) and NO under visible irradiation (λ > 420 nm). It was found that the visible photoreactivity of TiO2-HNBs was greatly enhanced after modified with Au nanoparticles, and TiO2-HNBs loaded with Au-NRs exhibit the highest visible photocatalytic activity towards both RhB degradation and NO oxidation. Upon visible irradiation, SPR effect induces the production of hot electrons from the Au nanoparticles, which can further transfer to the conduction band of TiO2-HNBs to produce superoxide radicals (O2), resulting in an efficient separation of photo-generated electron-hole pairs. The photoreactivity of Au-NRs/TiO2-HNBs towards RhB degradation almost keeps unchanged even after recycling used for 5 times, indicating that it is promising to be use in practical applications.  相似文献   

7.
Gold nanoparticle (Au‐NPs)‐Titanium oxide nanotube (TiO2‐NTs) electrodes are prepared by using galvanic deposition of gold nanoparticles on TiO2‐NTs electrodes as support. Scanning electron microscopy and energy‐dispersive X‐ray spectroscopy results indicate that nanotubular TiO2 layers consist of individual tubes of about 60–90 nm diameters and gold nanoparticles are well‐dispersed on the surface of TiO2‐NTs support. The electrooxidation of hydroquinone of Au‐NPs/TiO2‐NTs electrodes is investigated by different electrochemical methods. Au‐NPs/TiO2‐NTs electrode can be used repeatedly and exhibits stable electrocatalytic activity for the hydroquinone oxidation. Also, determination of hydroquinone in skin cream using this electrode was evaluated. Results were found to be satisfactory and no matrix effects are observed during the determination of hydroquinone content of the “skin cream” samples.  相似文献   

8.
Mesoporous TiO2 nanocrystalline film was formed on fluorine‐doped tin oxide electrode (TiO2/FTO) and gold nanoparticles (NPs) of different sizes were loaded onto the surface with the loading amount kept constant (Au/TiO2/FTO). Visible‐light irradiation (λ>430 nm) of the Au/TiO2/FTO photoanode in a photoelectrochemical cell with the structure of photoanode|0.1 m NaClO4 aqueous solution|Ag/AgCl (reference electrode)|glassy carbon (cathode) leads to the oxidation of water to oxygen (O2). We show that the visible‐light activity of the Au/TiO2/FTO anode increases with a decrease in Au particle size (d) at 2.9≤d≤11.9 nm due to the enhancement of the charge separation and increasing photoelectrocatalytic activity.  相似文献   

9.
Photocatalytic oxidation of methyl orange (MO) and Congo red (CR) as typical model organic contaminants was investigated in aqueous solution within a cooperating Au/TiO2/sepiolite heterostructure system under UV light irradiation. The Au/TiO2/sepiolite composites with a single-crystalline (anatase) framework was synthesized by a facile sol-gel method using titanium tetrachloride as a TiO2 precursor and depositing metal Au on the surface of TiO2 nanostructures via a facile chemical reduction process. The crystal structure, surface area, light adsorption and the photoinduced charge separation rate of the photocatalyst prepared were characterized in detail. As compared with the pristine TiO2, the Au/TiO2/sepiolite hybrid material exhibited good photocatalytic efficiency (90%) for the UV-light photooxidation of methyl orange, which is four-fold of that of reference TiO2. In addition, Au/TiO2/sepiolite hybrid material also shows a good photodegradation performance toward Congo red removal. The highly efficient photocatalytic activity is associated with the strong adsorption ability of sepiolite for aromatic dye molecules, fast photogenerated charge separation due to the formation of Schottky junction between TiO2 and metallic Au. This work suggests that the combination of the excellent adsorption properties of sepiolite and the efficient separation effect of noble metallic nanoparticles provides a versatile strategy for the synthesis of novel and highly efficient photocatalysts.  相似文献   

10.
Au core Ag shell composite structure nanoparticles were prepared using a sol method. The Au core Ag shell composite nanoparticles were loaded on TiO2 nanoparticles as support using a modified powder–sol method, enabling the generation of Au @ Ag/TiO2 photocatalysts for photocatalytic decomposition and elimination of ozone. The sols were characterized by means of ultraviolet–visible light (UV–Vis) reflection spectrometry, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The activity of the Au @ Ag/TiO2 photocatalysts for photocatalytic decomposition and elimination of ozone was evaluated and the effect of Cl? anions on the photocatalytic activity of the catalysts was highlighted. Results showed that Au @ Ag/TiO2 prepared via the modified powder–sol route in the presence of an appropriate amount of NaCl solid as demulsifier had better activity in the photocatalytic decomposition and elimination of ozone. At the same time, Au @ Ag/TiO2 catalysts had better ability to resist poisonous Cl? anions than conventional Au/TiO2 catalyst. The reasons could be, first, that NaCl was capable of reducing the concentration of free Ag+ by adsorption on the surface of Ag particles forming AgCl and enhancing the formation of Au core Ag shell particles, leading to a better resistance to Cl? anions of the catalysts, and, second, AgCl took part in the photocatalytic decomposition of ozone together with Au @ Ag/TiO2 catalysts and had a synergistic effect on the latter, resulting in better photocatalytic activity of Au @ Ag/TiO2 catalysts.  相似文献   

11.
A TiO2-coated Tunisian clay (TiO2–clay) was synthesized by a typical impregnation method. The physicochemical characterization points to a successful impregnation of titania on the clay surface. The activity of this structured catalyst was studied in the photocatalytic/photochemical oxidation of anionic reactive blue 19 (RB 19). The effect of UVA and solar irradiation (UV-solar) was studied at room temperature. TiO2–clay demonstrated an effective degradation of RB 19 under both types of irradiation. Moreover, in this study, the effects of various oxidants such as hydrogen peroxide (H2O2), potassium peroxodisulfate (K2S2O8) and sodium carbonate (Na2CO3) were thoroughly investigated. H2O2 was a promising oxidant for promoting RB 19 degradation under UVA. The kinetics of discoloration of RB 19 followed a pseudo-first-order rate law. We can remark that 20 min of UV irradiation was enough to achieve 100% discoloration of the aqueous solution. However, under UV–Vis, HPLC and chemical oxygen demand measurements indicated, that a longer reaction time (of around 45 min) was required for achieving the complete dye mineralization. The findings clearly demonstrated the applicability of this TiO2/clay catalyst for the photocatalytic oxidation of RB 19.  相似文献   

12.
Novel electrocatalysts Au/TiO2 nanotube arrays (Au/TiO2NTs) were prepared by loading low-content(1.9 at.%) of Au nanoparticles (AuNPs) onto highly ordered TiO2 nanotube arrays (TiO2NTs). Ethanol electrooxidation indicates that visible-light (λ > 400 nm) irradiation can significantly enhance the activity as well as resistpoisoning of Au/TiO2NTs electrocatalysts that are activated by plasmon resonance. Au/TiO2NTs catalysts calcinated at 300 °C display the highest performance due to the strong synergistic interactions between TiO2 and Au NPs. The combination of visible-light irradiation with a controllable potential offers a new strategyfor enhancing the performance of anodes in direct ethanol fuel cell (DEFC).  相似文献   

13.
An acid urethane oligodimethacrylate based on poly(ethylene glycol) was synthesized and used in the preparation of hybrid composites containing silsesquioxane sequences and titania domains formed through sol‐gel reactions along with silver/gold nanoparticles (Ag/Au NPs) in situ photogenerated during the UV‐curing process. The photopolymerization kinetics studied by Fourier transform infrared spectroscopy and photoDSC showed that the photoreactivity of the investigated formulations depends on the amount of titanium butoxide (5–20 wt %) added in the system subjected to UV irradiation. The introduction of 1 wt % AgNO3/AuBr3 in formulations slightly improved the degree of conversion but diminished the polymerization rates. The formation of hybrid materials comprising predominantly amorphous TiO2/SiO2 NPs, with or without Ag/Au NPs, was confirmed through specific analyses. The evaluation of photocatalytic activity demonstrated that the synthesized hybrid films are suitable for the complete removal of organic pollutants (phenolic compounds) from water under UV irradiation (200–350 min) at low intensity (found in the solar radiation). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1189–1204  相似文献   

14.
A nano-Au modified TiO2 electrode was prepared via the oxidation of Ti sheet in flame and subsequent modification with gold nanoparticles. The results of SEM and TEM measurements show that the Au nanoparticles are well dispersed on TiO2 surface. A near 2-fold enhancement in photocurrent was achieved upon the modification with Au nanoparticles. From the results of photocurrent and electrochemical impedance experiments it was found that the flatband potential of nano-Au/TiO2 electrode negatively shifted about 100 mV in 0.5 mol/L Na2SO4 solutions compared with that of bare TiO2 electrode. The improvement of photoelectrochemical performance was explained by the inhibition for charge recombination of photo-induced electrons and holes, and the promotion for interracial charge-transfer kinetics at nano-Au/TiO2 composite film. Such nanometal-semiconductor composite films have the potential application in improving the performance of photoelectrochemical solar cells.  相似文献   

15.
Two Au catalysts supported on TiO2 were prepared by impregnation method followed by sodium borohydride reduction or calcination in air (Au/TiO2-R and Au/TiO2-C, respectively). The 1 wt % Au/TiO2-R sample was found to be highly efficient for the oxidation of low concentrated formaldehyde at room temperature. A HCHO conversion of 98.5% was achieved with this catalyst, whereas the Au/TiO2-C sample showed almost no activity under the same conditions. Highly dispersed metallic Au nanoparticles with small size (∼3.5 nm) were identified in the 1 wt % Au/TiO2-R catalyst. A significant negative shift of Au4f peak in XPS spectra with respect to bulk metallic Au was observed for the 1 wt % Au/TiO2-R but no similar phenomena was found for the heat-treated catalyst. More Au nanoparticles and higher content of surface active oxygen were identified on the surface of the Au/TiO2-R in comparison with the Au/TiO2-C, suggesting that the Au/TiO2-R catalyst can enhance the amount of active sites and species involved in for HCHO oxidation. The reduction treatment by sodium borohydride promotes the formation of dispersed metallic Au nanoparticles with small size because it facilitates the electron transfer and increases the content of surface Au nanoparticles and activated oxygen. All these factors are responsible for a high activity of this catalyst in the oxidation of HCHO.  相似文献   

16.
Titanium dioxide (TiO2) is thought to be a photocatalytic agent excited by UV light. Our aim was to investigate the photocatalytic antitumor effect of water-dispersed TiO2 nanoparticles on C6 rat glioma cells and to evaluate the treatment responses by the spheroid models. Water-dispersed TiO2 nanoparticles were constructed by the adsorption of chemical modified polyethylene glycol (PEG) on the TiO2 surface (TiO2/PEG). Each monolayer and spheroid of C6 cells was coincubated with various concentrations of TiO2/PEG and subsequently irradiated with UV light. Damage of the cells and spheroids was evaluated sequentially by staining with the fluorescent dyes. The cytotoxic effect was correlated with the concentration of TiO2/PEG and the energy dose of UV irradiation. More than 90% of cells were killed after 13.5 J cm−2 of UV irradiation in the presence of 500 μg mL−1 TiO2/PEG. The irradiated spheroids in the presence of TiO2/PEG showed growth suppression compared with control groups. In TiO2/PEG-treated spheroids, the number of Annexin V-FITC-stained cells gradually increased during the first 6 h, and subsequently propidium iodide-stained cells appeared. The results of this study suggest that newly developed photoexcited TiO2/PEG have antitumoral activity. Photodynamic therapy utilizing this material can be a clue to a novel therapeutic strategy for glioma.  相似文献   

17.
A key to realizing the sustainable society is to develop highly active photocatalysts for selective organic synthesis effectively using sunlight as the energy source. Recently, metal‐oxide‐supported gold nanoparticles (NPs) have emerged as a new type of visible‐light photocatalysts driven by the excitation of localized surface plasmon resonance of Au NPs. Here we show that visible‐light irradiation (λ>430 nm) of TiO2‐supported Au NPs with a bimodal size distribution (BM‐Au/TiO2) gives rise to the long‐range (>40 nm) electron transport from about 14 small (ca. 2 nm) Au NPs to one large (ca. 9 nm) Au NP through the conduction band of TiO2. As a result of the enhancement of charge separation, BM‐Au/TiO2 exhibits a high level of visible‐light activity for the one‐step synthesis of azobenzenes from nitrobenzenes at 25 °C with a yield greater than 95 % and a selectivity greater than 99 %, whereas unimodal Au/TiO2 (UM‐Au/TiO2) is photocatalytically inactive.  相似文献   

18.
《中国化学快报》2021,32(11):3613-3618
Spatial isolation of different functional sites at the nanoscale in multifunctional catalysts for steering reaction sequence and paths remains a major challenge. Herein, we reported the spatial separation of dual-site Au and RuO2 on the nanosurface of TiO2 (Au/TiO2/RuO2) through the strong metal-support interaction (SMSI) and the lattice matching (LM) for robust photocatalytic hydrogen evolution. The SMSI between Au and TiO2 induced the encapsulation of Au nanoparticles by an impermeable TiOx overlayer, which can function as a physical separation barrier to the permeation of the second precursor. The LM between RuO2 and rutile-TiO2 can increase the stability of RuO2/TiO2 interface and thus prevent the aggregation of dual-site Au and RuO2 in the calcination process of removing TiOx overlayer of Au. The photocatalytic hydrogen production is used as a model reaction to evaluate the performance of spatially separated dual-site Au/TiO2/RuO2 catalysts. The rate of hydrogen production of the Au/TiO2/RuO2 is as high as 84 μmol h−1 g−1 under solar light irradiation without sacrificial agents, which is 2.5 times higher than the reference Au/TiO2 and non-separated Au/RuO2/TiO2 samples. Systematic characterizations verify that the spatially separated dual-site Au and RuO2 on the nanosurface of TiO2 can effectively separate the photo-generated carriers and lower the height of the Schottky barrier, respectively, under UV and visible light irradiation. This study provides new inspiration for the precise construction of different sites in multifunctional catalysts.  相似文献   

19.
低温吸附制备Au-TiO2复合薄膜及其光电化学性质   总被引:1,自引:0,他引:1  
傅平丰  张彭义 《无机化学学报》2009,25(11):2026-2030
在低温条件下将预先合成的Au溶胶吸附到TiO2薄膜上以制备纳米Au-TiO2复合薄膜,以超高分辨率场发射扫描电镜(FESEM)、X射线衍射(XRD)及X射线光电子能谱(XPS)表征Au-TiO2膜,并在UV辐照下测定了Au-TiO2薄膜电极的光电化学性质。纳米Au呈金属态,平均粒径为(4.3±1.2) nm,负载量高,均匀地沉积于TiO2薄膜表面。光电化学测试表明,沉积纳米Au后,TiO2电极的光生电流提高近5倍,光生电压明显向负值增大,说明纳米Au可增强光生载流子的分离效率,促进电荷在电极与溶液界面间的转移。Au-TiO2电极的电荷传递法拉第阻抗(Rct)是TiO2电极的一半,说明负载的纳米Au粒抑制了光生电子-空穴的复合,提高了电极中载流子浓度。  相似文献   

20.
A novel approach to synthesize Au/TiO2 nanostructures with interesting optical properties is presented and discussed. It is based on the nanoparticle “cold” or “hot” nanosoldering occurring when two water suspensions of Au and TiO2 nanoparticles are merely mixed at room temperature or laser irradiated after mixing.Thanks to the high fraction and mutual reactivity of surface species, immediately after the mixing process, the encounters between Au and TiO2 nanoparticles in liquid phase are enough for “cold” nanosoldering of gold nanoparticles onto TiO2 nanoparticles to occur. The optical characterizations show that this fast process (timescale less than 1 min) is followed by a slower process, attributable to some change of the Au nanoparticles. This latter process is significantly accelerated by the 532 nm laser light illumination. The structural and optical properties of “cold” and “hot” nanosoldered Au-TiO2 nanoparticles were investigated by TEM, UV-vis and fluorescence spectroscopies.Interesting optical limiting response was detected at laser fluences above 0.8 J/cm2. The nature of the nonlinear effect was investigated by the Z-scan technique, determining both the nonlinear absorption coefficient and the refraction index. Such interesting non-linear optical properties are worth to be tailored for specific applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号