首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Solid-acid catalytic materials such as ZrO2-Al2O3 containing 80?mol% of ZrO2 were prepared by the solution combustion method (SCM) using different fuels such as urea, hexamethylene tetramine, glycine, and sucrose. All the prepared solid acid catalytic materials were characterized for their physico-chemical properties like crystalinity, acidity, functionality and morphology. These materials were evaluated for their catalytic activity in the synthesis of a series of novel substituted benzimidazoles. The reaction conditions were optimized by varying the solvents, reaction temperature, weight of solid acid catalyst, molar ratio of the reactants, and reaction time. The ZrO2-Al2O3 solid acid catalytic material prepared by urea as a fuel was found to be highly active, recyclable, and reusable in the synthesis of benzimidazoles. A possible reaction mechanism for the synthesis of benzimidazoles is also proposed.  相似文献   

2.
The synthesis of trifluoroacetaldehyde by vapor-phase oxidation of 2,2,2-trifluoroethanol using supported vanadium catalysts was studied. Significant differences were observed in the reaction outcomes resulting from different types of catalysts. The ZrO2- and Al2O3-supported catalyst demonstrated both high catalytic activity and selectivity. The addition of co-catalysts such as MoO3 or SnO2 improved catalytic performance (Selectivity: up to 91%; S.T.Y.: >200 g L−1 h−1). The experimental results on catalyst lifetime showed a marked decrease in the activity of the Al2O3-supported catalyst within tens of hours, while the ZrO2-supported catalyst showed little, if any, performance alterations for 2000 h.  相似文献   

3.
Esterification of acetic acid with n-Butanol has been studied in a heterogeneous reaction system using two γ-alumina-supported vanadium oxide catalysts with different V loadings, which were prepared by the impregnation of a precipitated alumina. The alumina support and the supported catalysts were characterized using X-ray diffraction, N2 adsorption, EDX analysis and NH3-TPD techniques. The effects of the reaction time, of the molar ratio of the reactants, of the speed of agitation and of the mass fraction of the catalyst on the catalytic properties were studied. In the presence of the supported catalyst containing 10 wt % V2O5 (10V-Al2O3 sample) the conversion reached 87.7% after 210 min of reaction at 100 °C with an n-Butanol-to-acetic acid mole ratio equal to one. The conversion as well as the total acidity measured by TPD of NH3 increased in the following order: Al2O3 < 5V-Al2O3 (5 wt % V2O5/Al2O3) < 10V-Al2O3. In all cases the reaction was completely selective to n-butyl acetate. Nevertheless, a loss in catalytic activity after three reaction cycles with 10 V2O5–Al2O3 catalyst was observed.  相似文献   

4.
The catalytic oxidation of methane was studied over calcined and reduced Pt–Pd/γ-Al2O3 catalysts, in the presence and the absence of SO2 in the CH4–O2 reaction feed. The effect of sulfation (SO2 + O2 for 4 h at 500 °C) was also studied on the catalyst resistance to deactivation by sulfur poisoning. Sulfating the calcined Pt–Pd/γ-Al2O3 catalysts resulted in a strong deactivation for the CH4–O2 reaction. However, the catalytic activity of the reduced-sulfated Pt–Pd/γ-Al2O3 catalyst for CH4–O2 reaction remained rather unaffected in the presence and in the absence of SO2 in the reaction feed. XPS analysis revealed, over reduced-sulfated Pt–Pd/γ-Al2O3 catalysts, the presence of Pt(0) metallic surface species on which SO2 interactions may be faster related to Pd surface species. The presence of Pt(0) may be necessary to prevent the interactions between SO2 and Pd surface species. Long time catalytic tests showed that the activity of a reduced Pt–Pd/γ-Al2O3 catalysts for CH4–O2 reactions remained rather unaffected despite the presence of SO2 in the reaction feed.  相似文献   

5.
This paper reports a new fabrication method of the PtSnNa/γ-Al2O3 catalyst through ball milling, which is more stable and active than the commercial catalyst.  相似文献   

6.
A novel Pd-Fe/α-Al_2O_3 catalyst was synthesized by incipient-wetness impregnation method with bayberry tannin as chelating promoter and commercial hollow column Raschig ring a-Al_2O_3 as support for the synthesis of diethyl oxalate from CO and ethyl nitrite.A variety of characterization techniques including N_2 physical adsorption,optical microscopy,scanning electron microscopy and energy dispersive system(SEM-EDS),inductively coupled plasma optical emission spectroscopy(ICP-OES),X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),transmission electron microscopy(TEM),were employed to explore the relationship between the physicochemical properties and activity of catalysts.It indicated that a large number of phenolic hydroxyl groups in bayberry tannin can efficiently anchor the active component Pd,reduce the particle size and make the active Pd as a multi-ring distribution on the commercial a-Al_2O_3 suppo rt,which we re beneficial to improve the catalytic activity for the production of diethyl oxalate from CO and ethyl nitrite.0.3 wts Pd-Fe/α-Al_2O_3 showed excelle nt catalytic activity and selectivity in a continuous flow,fixed-bed reactor with the loading amount of 10 mL catalysts,Under the mild reaction conditions,the space-time yield of diethyl oxalate was 978 g L ~1 h ~1 and CO conversion was 44% with the selectivity to diethyl oxalate of 95.5%.  相似文献   

7.
《Chemical physics letters》2006,417(1-3):137-142
The aim of the Letter is to elucidate the nature of metal-support interaction in the 2 wt% Rh/Al2O3 catalyst obtained by annealing Rh–O–Al xerogel at 1113 K in air.XPS, HRTEM, and XRD results reveal that during the Rh–O–Al xerogel annealing in air, rhodium incorporates into forming alumina, which results mostly in Rh4+/δ-Al2O3 solid solution formation.However, in the course of the catalyst reduction at 773 with H2 and at 823 K with CH4 the Rh4+/δ-Al2O3 solid solution transforms into Rh–Al alloy. The islands of rhodium form on the surface of the Rh–Al alloy nanocrystallites if the reduction is slow enough.  相似文献   

8.
《Supramolecular Science》1998,5(3-4):227-228
Embedding structures of a metal nanoparticle in an oxide matrix were first achieved by electron beam irradiation. In the system of Al/α-Al2O3. Al nanoparticles derived from θ-Al2O3 migrated and embedded in α-Al2O3 matrix having epitaxy relation, {1 1  0}α-Al2O3//{2 0 0} Al. The driving force of the embedding is momentum transfer from electrons or ions to Al atoms of nanoparticles in the pole piece of transmission electron microscopy.  相似文献   

9.
《Comptes Rendus Chimie》2015,18(3):250-260
CuO–ZnO–Al2O3 catalysts were synthesized by two methods, sol–gel and co-precipitation syntheses. Al2O3 was then substituted with other supports, such as ZrO2, CeO2 and CeO2–ZrO2 in order to have a better understanding of the support's effect. These catalysts containing 30 wt% of Cu were then tested for CO2 hydrogenation into methanol. The effect of reaction temperature and GHSV on the catalytic behaviour was also investigated. The best results were obtained with a 30 CuO–ZnO–ZrO2 catalyst synthesized by co-precipitation and calcined at 400 °C. This catalyst presents a good CO2 conversion rate (23%) with 33% of methanol selectivity, leading to a methanol productivity of 331 gMeOH.kgcata−1·h−1 at 280 °C under 50 bar and a GHSV of 10,000 h−1.  相似文献   

10.
A new type of magnetically-separable nanocatalyst was prepared through the immobilization of phosphomolybdic acid (H3PMo12O40) in 10–30 wt.% on the surface of core-shell zirconia-coated magnetite nanoparticle (nano-Fe3O4@ZrO2). The developed heterogeneous nano-sized acid catalyst named nano-Fe3O4@ZrO2 supported PMA (or n-Fe3O4@ZrO2/PMA) was characterized using several techniques such as FT-IR, XRD, FE-SEM, VSM, EDX, TEM and TGA. The characterization data derived from FT-IR spectroscopy exhibited that H3PMo12O40 species on the support retained their Keggin structures. Additionally, the potentiometric titration with n-butylamine was employed to measure the acidity content of the as-obtained catalyst. Surprisingly, this novel active solid acid catalyst displayed to have a higher number of surface active sites compared to its homogeneous analogues. Besides, the catalytic activity of the catalyst was evaluated in multicomponent reactions (MRCs) for the rapid and efficient one-pot synthesis of 2, 4, 5-trisubstituted and 1, 2, 4, 5-tetrasubstituted imidazoles in high yields and selectivity. The sample of 20 wt.% displayed higher acidity content which led to its enhanced activity in the catalytic transformation. Moreover, the catalyst could be easily reused without deactivation after five runs, which made it a promising catalyst for practical and large-scale applications. This outstanding reusability was ascribed to the strong attachment of PMA molecules on the n-Fe3O4@ZrO2 support material.  相似文献   

11.
宋华  董鹏飞  张旭 《物理化学学报》2010,26(8):2229-2234
通过向SO2-4 /ZrO2催化剂中同时引入适量的Pt和Al2O3, 制备出了具有较高催化性能和稳定性的Pt-SO2-4 /ZrO2-Al2O3型固体超强酸催化剂. 以正戊烷异构化反应为探针, 考察了Al含量对催化剂性能的影响; 并采用X射线衍射(XRD)、比表面积测定(BET)、红外(IR)光谱、程序升温还原(TPR)、热重-差热分析(TG-DTA)和氨-程序升温脱附(NH3-TPD)手段对催化剂进行了表征. 结果表明, Al能够提高ZrO2的晶化温度, 抑制硫的分解, 增加催化剂的比表面积, 增强硫氧键的结合, 提高催化剂的还原性能, 增加催化剂的酸强度和酸总量. 当Al2O3含量(质量分数, w)为5.0%时, Pt-SO2-4 /ZrO2-Al2O3固体超强酸催化剂的催化活性最好, 在100 h内异戊烷收率可稳定在52.0%以上, 选择性在98.2%以上.  相似文献   

12.
Novel γ-Al2O3 supported nickel (Ni/Al2O3) catalyst was developed as a functional layer for Ni–ScSZ cermet anode operating on methane fuel. Catalytic tests demonstrated Ni/Al2O3 had high and comparable activity to Ru–CeO2 and much higher activity than the Ni–ScSZ cermet anode for partial oxidation, steam and CO2 reforming of methane to syngas between 750 and 850 °C. By adopting Ni/Al2O3 as a catalyst layer, the fuel cell demonstrated a peak power density of 382 mW cm?2 at 850 °C, more than two times that without the catalyst layer. The Ni/Al2O3 also functioned as a diffusion barrier layer to reduce the methane concentration within the anode; consequently, the operation stability was also greatly improved without coke deposition.  相似文献   

13.
The composite tubular membranes were prepared by applying suspensions of zirconia particles to form separation top-layers on two different porous α-alumina supports and heating the coated supports to partly sinter the particles of top-layers. The conditions of synthesizing the ZrO2/α-Al2O3 membranes were investigated systematically. The mean pore diameter of zirconia membrane was about 0.2 μm by gas bubble pressure method, and the pure water flux was about 400 and 1500 l/(m2 h bar) for ZrO2 membrane on symmetric and asymmetric Al2O3 support, respectively. Zirconia membrane and three different alumina membranes were applied to separate oil–water emulsion obtained from steelworks to evaluate the permeability and separation characteristics, the ZrO2/α-Al2O3 MF membrane in this work was the preferred membrane.  相似文献   

14.
Boron–phosphorus mixed oxides were tested as heterogeneous catalysts for the gas-phase etherification of catechol (1,2-dihydroxybenzene) with methanol, aimed at the production of guaiacol (1-methoxyphenol). This reaction represents an alternative to the etherification processes which makes use of homogeneous catalysts in the liquid phase. The activity of the catalysts was found to depend considerably on the B/P atomic ratio. A catalyst having B/P = 1.0, made of BPO4, exhibited the best results in terms of (i) conversion of catechol, (ii) selectivity to guaiacol, and (iii) steadiness of performance with time-on-stream. Characterisation of the catalyst using TPD of NH3 evidenced that this catalyst has the optimal surface acidity, which makes the undesired reactions of tar formation and ring-alkylation slower. Supporting the B/P/O catalysts on α-Al2O3 resulted in lower activity, but the catalytic performance was less dependent on the B/P ratio. Doping with potassium resulted in a lowering of the number of acid sites; however, small amounts of dopant led to an increase in activity, possibly due to a co-operation effect between basic and acid sites.  相似文献   

15.
《Tetrahedron》2006,62(2-3):422-433
More environmentally benign alternatives to current chemical processes, especially large-scale, fundamental reactions like ester condensations, are highly desirable for many reactions. Bulky diarylammonium pentafluorobenzenesulfonates and tosylates serve as extremely active dehydration catalysts for the ester condensation reaction of carboxylic acids with equimolar amounts of sterically demanding alcohols and acid-sensitive alcohols. Typically, the esterification reaction is performed in heptane by heating at 80 °C in the presence of 1 mol% of the catalyst without removing water. Esterification with primary alcohols proceeds without solvents even at room temperature. Furthermore, 4-(N-mesitylamino)polystyrene resin-bound pentafluorobenzenesulfonate can be recycled more than 10 times without a loss of activity.  相似文献   

16.
The local structures of supported CuO/γ-Al2O3 monolayer dispersive catalysts with different CuO loadings have been investigated by EXAFS and multiple scattering XANES simulations. The EXAFS results show that the first nearest neighbors around the Cu atoms in the CuO/γ-Al2O3 catalysts are similar to that of the polycrystalline CuO powder, which is independent of the CuO loadings. Moreover, the Cu K-XANES FEFF8 calculations for CuO reveal that the monolayer-dispersed CuO species are of small distorted (CuO4)mn+ clusters, which is mainly composed of a distorted CuO6 octahedron incorporated in the surface octahedral vacant sites of the γ-Al2O3 support. We consider that the CuO species for the CuO/γ-Al2O3 catalysts with loadings of 0.4 and 0.8 mmol/100 m2 are distorted (CuO4)mn+ clusters composed mainly of a distorted CuO6 octahedron incorporated in the surface octahedral vacant sites of the γ-Al2O3 support after calcinations at high temperature in air for a few hours. On the contrary, for the CuO/γ-Al2O3 with loading of 1.2 mmol/100 m2, the local structure of Cu atoms in CuO/γ-Al2O3 is similar to that of polycrystalline CuO powder.  相似文献   

17.
Strategies for countering the solubility of LiMn2O4 (spinel) electrodes at 50 °C and for suppressing the reactivity of layered LiMO2 (M=Co, Ni, Mn, Li) electrodes at high potentials are discussed. Surface treatment of LiMn2O4 with colloidal zirconia (ZrO2) dramatically improves the cycling stability of the spinel electrode at 50 °C in Li/LiMn2O4 cells. ZrO2-coated LiMn0.5Ni0.5O2 electrodes provide a superior capacity and cycling stability to uncoated electrodes when charged to a high potential (4.6 V vs Li0). The use of Li2ZrO3, which is structurally more compatible with spinel and layered electrodes than ZrO2 and which can act as a Li+-ion conductor, has been evaluated in composite 0.03Li2ZrO3 · 0.97LiMn0.5Ni0.5O2 electrodes; glassy LixZrO2 + x/2 (0<x⩽2) products can be produced from colloidal ZrO2 for surface coatings.  相似文献   

18.
《Tetrahedron: Asymmetry》2005,16(8):1449-1452
Alumina supported rhodium catalyst using cinchonidine as a stabilizer exhibited excellent performance in the asymmetric hydrogenation of ethyl pyruvate with the addition of quinine. Quinine as a chiral modifier can not only induce the enantioselectivity, but also greatly accelerate the reaction. Under the optimum conditions: 293 K, 7.0 MPa of hydrogen pressure and 4.6 × 10−3 mol/L of quinine concentration in THF, TOF of Rh/2(cinchonidine)-γ-Al2O3 as catalyst and ee value of (R)-ethyl lactate can achieve 894 h−1 and 71.6% ee, respectively.  相似文献   

19.
A decarboxylative coupling reaction with an alkynyl carboxylic acid and aryl iodides in the presence of a nickel catalyst was developed. When the reaction was conducted with NiCl2 (10 mol%), Xantphos (15 mol%), Mn (1.0 equiv), and Cs2CO3 (1.5 equiv), the desired diaryl alkynes were formed in moderated to good yields. Furthermore, this method does not produce the diyne, which is formed in the homocoupling of alkynyl carboxylic acids.  相似文献   

20.
Base-catalyzed C–C cross coupling of secondary alcohols and aryl-aldehydes was achieved, when an alcoholic solution of an aryl-aldehyde was stirred under reflux for 45 h in the presence of a catalytic (20 mol%) amount of K2CO3. The consistent formation of α,α′-bis-(benzylidene) alkanones was obtained in moderate to good yields using various secondary alcohols and substituted aryl-aldehydes. Herein, α,α′-bis-(benzylidene)alkanones, which are the classical products of Claisen-Schmidt (cross aldol) condensation, have been synthesized via an alternative strategy using secondary alcohols. Bis-(benzylidene) alkanones are an integral part of various drug regimes and the production of bis-(benzylidene) alkanones without using any precious metal is a major outcome of the present reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号