首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Swati Mukhopadhyay 《Meccanica》2013,48(7):1717-1730
Similarity analysis is performed to investigate the structure of the boundary layer stagnation-point flow and heat transfer over a stretching sheet subject to suction. Fluid viscosity is assumed to vary as a linear function of temperature. Thermal radiation term is considered in the energy equation. The symmetry groups admitted by the corresponding boundary value problem are obtained by using a special form of Lie group transformations viz. scaling group of transformations. With the help of them the partial differential equations corresponding to momentum and energy equations are transformed into highly non-linear ordinary differential equations. Numerical solutions of these equations are obtained by shooting method. It is found that the horizontal velocity increases with the increasing values of the ratio of the free stream velocity to the stretching velocity. Velocity increases with the increasing temperature dependent fluid viscosity parameter when the free-stream velocity is less than the stretching velocity but opposite behavior is noted when the free-stream velocity is greater than the stretching velocity. Due to suction, fluid velocity decreases at a particular point of the surface. Temperature at a point of the surface is found to decrease with increasing thermal radiation.  相似文献   

3.
The goal of the present paper is to examine the magnetohydrodynamic effects on the boundary layer flow of the Jeffrey fluid model for a non-Newtonian nanofluid past a stretching sheet with considering the effects of a heat source/sink. The governing partial differential equations are reduced to a set of coupled nonlinear ordinary differential equations by using suitable similarity transformations. These equations are then solved by the variational finite element method. The profiles of the velocity, temperature, and nanoparticle volume fraction are presented graphically, and the values of the Nusselt and Sherwood numbers are tabulated. The present results are compared with previously published works and are found to be in good agreement with them.  相似文献   

4.
5.
The present paper deals with the analysis of boundary layer flow and heat transfer of a dusty fluid over a stretching sheet with the effect of non-uniform heat source/sink. Here we consider two types of heating processes namely (i) prescribed surface temperature and (ii) prescribed surface heat flux. The momentum and thermal boundary layer equations of motion are solved numerically using Runge Kutta Fehlberg fourth–fifth order method (RKF45 Method). The effects of fluid particle interaction parameter, Eckert number, Prandtl number, Number of dust particle and non-uniform heat generation/absorption parameter on temperature distribution are analyzed and also the effect of wall temperature gradient function and wall temperature function are tabulated and discussed.  相似文献   

6.
This paper deals with the study of boundary layer flow and heat transfer of a visco-elastic fluid immersed in a porous medium over a non-isothermal stretching sheet. The fluid viscosity is assumed to vary as a function of temperature. The presence of variable viscosity of the fluid leads to the coupling and the non-linearity in the boundary value problem. A numerical shooting algorithm for two unknown initial conditions with fourth-order Runge-Kutta integration scheme has been used to solve the coupled non-linear boundary value problem. An analysis has been carried out for two different cases namely (1) prescribed surface temperature (PST), and (2) prescribed heat flux (PHF), to get the effect of fluid viscosity, permeability parameter and visco-elastic parameter for various situations. The important finding of our study is that the effect of fluid viscosity parameter is to decrease the wall temperature profile significantly when flow is through a porous medium. Further, the effect of permeability parameter is to decrease the skin friction on the sheet.  相似文献   

7.
The paper considers the flow of a power-law fluid past a vertical stretching sheet. Effects of variable thermal conductivity and non-uniform heat source/sink on the heat transfer are addressed. The thermal conductivity is assumed to vary linearly with temperature. Similarity transformation is used to convert the governing partial differential equations into a set of coupled, non-linear ordinary differential equations. Two different types of boundary heating are considered, namely Prescribed power-law Surface Temperature (PST) and Prescribed power-law Heat Flux (PHF). Shooting method is used to obtain the numerical solution for the resulting boundary value problems. The effects of Chandrasekhar number, Grashof number, Prandtl number, non-uniform heat source/sink parameters, wall temperature parameter and variable thermal conductivity parameter on the dynamics are shown graphically in several plots. The skin friction and heat transfer coefficients are tabulated for a range of values of the parameters. Present study reveals that in a gravity affected flow buoyancy effect has a significant say in the control of flow and heat transfer.  相似文献   

8.
A three-dimensional flow of a magnetohydrodynamic Casson fluid over an unsteady stretching surface placed into a porous medium is examined. Similarity transformations are used to convert time-dependent partial differential equations into nonlinear ordinary differential equations. The transformed equations are then solved analytically by the homotopy analysis method and numerically by the shooting technique combined with the Runge–Kutta–Fehlberg method. The results obtained by both methods are compared with available reported data. The effects of the Casson fluid parameter, magnetic field parameter, and unsteadiness parameter on the velocity and local skin friction coefficients are discussed in detail.  相似文献   

9.
In this paper we study the boundary layer equations for steady laminar flow past a heated horizontal plate embedded in a saturated porous medium by adopting the formulation of Chandrasekhara [3], Kolar and Sastri [7]. The velocity distribution and temperature distribution are determined by using the implicit Crank-Nicolson-Predictor-Corrector method of finite difference scheme [7] and [1]. With the help of a compute the distributions are estimated at both (i+1/2)th and (i+1)th levels and they are presented in tabular form. The curves for these distributions are plotted. We calculate the shear stress and skin friction at the wall and observe that the skin-friction directly depends upon the dimensions of the plate and inversely depends upon the Reynolds numberRe. The heat flux and the Nusselt number are evaluated. Further we observe that the Nusselt number depends upon the length of the porous plate.
Stetige laminare Strömung über eine in einem gesättigten porösen Medium eingebettete horizontale Platte
Zusammenfassung Diese Untersuchung befaßt sich mit den Grenzschichtgleichungen für eine stetige laminare Strömung über eine beheizte Platte, die in ein gesättigtes poröses Medium eingebettet ist, mittels des Formalismus von Chandrasekhara [3], Kolar und Sastri [7]. Die Geschwindigkeits- und Temperaturverteilung wurden unter Benutzung der impliziten Crank-Nicolson-Korrekturmethode des Finiten-Elemente-Schemas bestimmt. Die (i+1/2). und die (i+1). Ebene der Verteilungen wurden mit Computer-Hilfe berechnet und in Tabellenform dargestellt. Die Graphen der Temperatur- und Geschwindigkeitsverteilung wurden ausgeplottet. Die Schubspannungen und die Oberflächenreibung an der Wand wurden berechnet und es konnte festgestellt werden, daß die Oberflächenreibung direkt von der Größe der Platte abhängt und umgekehrt proportional der Reynolds-ZahlRe ist. Der Wärmestrom und die Nusselt-Zahl wurden bestimmt. Weiterhin konnte festgestellt werden, daß die Nusselt-Zahl von der Länge der porösen Platte abhängt.

Nomenclature C p specific heat of the convective fluid - D skin friction - k permeability of the porous medium - k f thermal conductivity of the fluid - k m the coefficient of thermal conductivity of the porous medium - k s the conductivity of the solid matrix - N(x) Nusselt number - q(x) specific heat flux - Re local Reynolds number - T temperature - T 0 temperature of the free stream - T w temperature of the plate - u velocity in thex-direction - u 0 velocity of the free stream - V velocity iny-direction - x coordinate axis along the plate - y coordinate axis normal to the plate Greek symbols thermal diffusivity - thickness of the velocity boundary layers in thex direction - thickness of the velocity boundary layer in they-direction - the porosity of the medium - dimensionless variable - kinematic viscosity of the fluid - density of the fluid - shear stress  相似文献   

10.
The convection of a Maxwell fluid over a stretching porous surface with a heat source/sink in the presence of nanoparticles is investigated. The Lie symmetry group transformations are used to convert the boundary layer equations into coupled nonlinear ordinary differential equations. The ordinary differential equations are solved numerically by the Bvp4c with MATLAB, which is a collocation method equivalent to the fourth-order mono-implicit Runge-Kutta method. Furthermore, more attention is paid to the effects of the physical parameters, especially the parameters related to nanoparticles, on the temperature and concentration distributions with consideration of permeability and the heat source/sink.  相似文献   

11.
A steady two-dimensional magnetohydrodynamic stagnation-point flow of an electrically conducting fluid and heat transfer with thermal radiation of a nanofluid past a shrinking and stretching sheet is investigated numerically. The model used for the nanofluid incorporates the effects of the Brownian motion and thermophoresis. A similarity transformation is used to convert the governing nonlinear boundary-layer equations into coupled higher-order nonlinear ordinary differential equations. The result shows that the velocity, temperature, and concentration profiles are significantly influenced by the Brownian motion, heat radiation, and thermophoresis particle deposition.  相似文献   

12.
A study is made with an analysis of an incompressible viscous fluid flow past a slightly deformed porous sphere embedded in another porous medium. The Brinkman equations for the flow inside and outside the deformed porous sphere in their stream function formulations are used. Explicit expressions are investigated for both the inside and outside flow fields to the first order in small parameter characterizing the deformation. The flow through the porous oblate spheroid embedded in another porous medium is considered as the particular example of the deformed porous sphere embedded in another porous medium. The drag experienced by porous oblate spheroid in another porous medium is also evaluated. The dependence of drag coefficient and dimensionless shearing stress on the permeability parameter, viscosity ratio and deformation parameter for the porous oblate spheroid is presented graphically and discussed. Previous well-known results are then also deduced from the present analysis.  相似文献   

13.
14.
This article presents a numerical solution for the flow of a Newtonian fluid over an impermeable stretching sheet embedded in a porous medium with the power law surface velocity and variable thickness in the presence of thermal radiation. The flow is caused by non-linear stretching of a sheet. Thermal conductivity of the fluid is assumed to vary linearly with temperature. The governing partial differential equations (PDEs) are transformed into a system of coupled non-linear ordinary differential equations (ODEs) with appropriate boundary conditions for various physical parameters. The remaining system of ODEs is solved numerically using a differential transformation method (DTM). The effects of the porous parameter, the wall thickness parameter, the radiation parameter, the thermal conductivity parameter, and the Prandtl number on the flow and temperature profiles are presented. Moreover, the local skin-friction and the Nusselt numbers are presented. Comparison of the obtained numerical results is made with previously published results in some special cases, with good agreement. The results obtained in this paper confirm the idea that DTM is a powerful mathematical tool and can be applied to a large class of linear and non-linear problems in different fields of science and engineering.  相似文献   

15.
An unsteady boundary layer flow of a non-Newtonian fluid over a continuously stretching permeable surface in the presence of thermal radiation is investigated. The Maxwell fluid model is used to characterize the non-Newtonian fluid behavior. Similarity solutions for the transformed governing equations are obtained. The transformed boundary layer equations are then solved numerically by the shooting method. The flow features and heat transfer characteristics for different values of the governing parameters (unsteadiness parameter, Maxwell parameter, permeability parameter, suction/blowing parameter, thermal radiation parameter, and Prandtl number) are analyzed and discussed in detail.  相似文献   

16.
The aim of this paper is to present the boundary layer flow of viscous incompressible fluid due to a porous vertical stretching surface with a power-law stretching velocity in a thermally stratified medium. Using a special form of Lie group transformations viz. scaling group of transformations, similarity solutions for this problem are obtained. The equations are then solved numerically. With increasing values of the stratification parameter, the velocity as well as temperature decreases. At a particular point of the porous stretching sheet, the velocity decreases with the increasing suction parameter. The dimensionless temperature at a point of the sheet decreases due to suction but increases due to injection. The findings of this study reveal that stratification and suction can be used as means of cooling the boundary layer flow region.  相似文献   

17.
The boundary-layer equations for two-dimensional steady flow of an incompressible, viscous fluid near a stagnation point at a heated stretching sheet placed in a porous medium are considered. We apply Lie-group method for determining symmetry reductions of partial differential equations. Lie-group method starts out with a general infinitesimal group of transformations under which the given partial differential equations are invariant. The determining equations are a set of linear differential equations, the solution of which gives the transformation function or the infinitesimals of the dependent and independent variables. After the group has been determined, a solution to the given partial differential equations may be found from the invariant surface condition such that its solution leads to similarity variables that reduce the number of independent variables of the system. The effect of the velocity parameter λ, which is the ratio of the external free stream velocity to the stretching surface velocity, permeability parameter of the porous medium k 1, and Prandtl number Pr on the horizontal and transverse velocities, temperature profiles, surface heat flux and the wall shear stress, has been studied.  相似文献   

18.
19.
The extended homotopy perturbation method, which is an extension of the celebrated homotopy perturbation method (HPM), is applied to obtain a solution to the problem of the steady, laminar, axisymmetric flow of a viscous, incompressible fluid past a porous stretching sheet. The solution so obtained is totally analytical and is expressible in terms of the cross‐flow velocity of the fluid past the stretching sheet. Its hallmark is that it does not depend upon computation of any auxiliary parameter for enlarging the convergence region of the solution. Rather, it calculates the solution automatically adjusting the scaling factor of the independent similarity variable normal to the sheet. The results obtained by the extended HPM are in excellent agreement with the exact numerical solution. Also, an asymptotic solution valid for large suction parameter is developed, which matches well with the exact solution even for moderate values of the suction parameter. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The present work investigates the micropolar fluid flow due to a permeable stretching sheet and the resulting heat transfer. Unlike the existing numerical works on the flow phenomenon in the literature, the prime interest here is to analytically work out shape of the solutions and identify whether they are unique. Indeed, unique solutions are detected and presented in the exact formulas for the associated boundary layer equations. Temperature field influenced by the microrotation is also mathematically resolved in the cases of constant wall temperature, constant heat flux and Newtonian heating. To discover the salient physical features of many mechanisms acting on the considered problem, it is adequate to have the analytical velocity and temperature fields and also closed-form skin friction/couple stress/heat transfer coefficients, all as given in the current paper. For instance, the practically significant rate of heat transfer is represented by a single formula valid for all three temperature cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号