首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The deuterated C15-type Laves phase ZrV2D3.6 undergoes a structural phase transition near room temperature (T ≈ 325 K). In the cubic high-temperature phase the deuterium atoms are disordered over two types of tetrahedral interstices, the centres of which are 1.3 Å apart. In the tetragonal low-temperature phase the D atoms are ordered and occupy only the energetically more favourable interstices. The tetragonal structure is isotypic with the low-temperature phase of HfV2D4. The shortest D—D distance is 2.1 Å.  相似文献   

2.
We used optical birefringence, X-ray and neutron diffraction methods with single crystals to study the structural phase transitions of the perowskite-type layer structures of (CH3NH3)2MeCl4 with Me=Mn, Fe. The Mn-compound shows the following structural transitions at 394 K — a continuous order-disorder phase transition from tetragonal symmetry I4mmm to orthorhombic space group Abma (Cmca in reference 10); at 257 K — a discontinuous transition to a second tetragonal modification; at 95 K — a discontinuous transition to a monoclinic phase. For the Fe-compound the corresponding transition temperatures are 328 K and 231 K, respectively. A low temperature monoclinic phase could not be observed. The lattice parameters of the different modifications were determined as a function of temperature. The temperature dependent course of the order parameter has been investigated for the order—disorder transition. For both compounds, all the methods used gave the same value for the critical exponent of β = 0.315.  相似文献   

3.
A second order phase transition between the space groups D182h and D174hleads to the high temperature tetragonal phase of (CH3NH3)2MnCl4. Similar transitions to tetragonal phases exist also in the ethyl- and propyl-compounds. Transition temperature increase with an increasing carbon chain length. Very low ΔH- and ΔS-values are compatible with a transition model obtained from nuclear resonance experiments. Further thermoanalytical results bear evidence on the complex role of alkyl-ammonium groups.  相似文献   

4.
The heat capacity of the layer compounds tetrachlorobis (n-propylammonium) manganese II and tetrachlorobis (n-propylammonium) cadmium II, (CH3CH2CH2NH3)2MnCl4 and (CH3CH2CH2NH3)2CdCl4 respectively, has been measured over the temperature range 10 K ?T ? 300 K.Two known structural phase transitions were observed for the Mn compound in this temperature region: at T = 112.8 ± 0.1 K (ΔHt= 586 ± 2 J mol?1; ΔSt = 5.47 ± 0.02 J K?1mol?1) and at T =164.3 ± (ΔHt = 496 ± 7 J mol?1; ΔSt =3.29 ± 0.05 J K?1mol?1). The lower transition is known to be from a monoclinic structure to a tetragonal structure, while the upper is from the tetragonal phase to an orthorhombic one. From comparison with the results for the corresponding methyl Mn compound it is deduced that the lower transition primarily involves changes in H-bonding while the upper transition involves motion in the propyl chain.A new structural phase transition was observed in the Cd compound at T= 105.5 ± 0.1 K (ΔHt= 1472.3 ± 0.1 J mol?1; ΔSt = 13.956 ± 0.001 J K?1mol?1), in addition to two transitions that have been observed previously by other techniques. The higher of these transitions(T = 178.7 ± 0.3 K; ΔHt = 982 ± 4 J mol?1 ΔSt = 6.16 ± 0.02 J K? mol?1) is known to be between two orthorhombic structures, while the structural changes at the lower transition (T= 156.8 ± 0.2 K; ΔHt = 598 ± 5 J mol?1, ΔSt = 3.85 ± 0.03 J K?1 mol?1) and at the new transition are not known. It is proposed that these two transitions correspond respectively to the tetragonal to orthorhombic and monoclinic to tetragonal transitions in the propyl Mn compounds.In addition to the structural phase transitions (CH3CH2CH2NH3)2MnCl4 magnetically orders at t? 130 K. The magnetic contribution to the heat capacity is deduced from the heat capacity of the corresponding diamagnetic Cd compound and is of the form expected for a quasi 2-dimensional Heisenberg antiferromagnet.  相似文献   

5.
75As-zero-field nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements are performed on CaFe2As2 under pressure. At P=4.7 and 10.8 kbar, the temperature dependence of nuclear-spin-lattice relaxation rate (1/T1) measured at tetragonal phase show no coherence peak just below Tc and decrease with decreasing temperature. The superconductivity is of gapless at P=4.7 kbar but evolves to multiple gaps at P=10.8 kbar. We find that the superconductivity appears near a quantum critical point. Both electron correlation and superconductivity disappear in the collapsed tetragonal phase. A systematic study under pressure indicates that electron correlations play a vital role in forming Cooper pairs in this compound.  相似文献   

6.
We report the results of a room-temperature investigation of the thermoelectric and the dilatometric properties of a heavy fermion system YbPd2Si2 (itterbium-palladium-silicon, 1-2-2) at high pressure P up to 22 GPa; YbPd2Si2 is a less-studied representative of the RM2X2 family (R=Ce, Yb, U; M=transition metal; X=Si, Ge) with the tetragonal ThCr2Si2-type structure of the I4/mmm space group. Around P∼6±0.5 GPa, a phase transition in Yb-Pd-Si was registered by the drastic changes in the pressure dependencies of the electrical resistance R, the thermopower (Seebeck effect) S, a temperature difference along a sample ΔT, and a sample's thickness Δx (related to compressibility). Both a nature of the found phase transition and a presumable P-T phase diagram of YbPd2Si2 are discussed.  相似文献   

7.
Piezoelectric ceramics with compositions of (0.90−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3-0.10PbZrO3, x=0.28, 0.31, 0.34, 0.37, 0.40 and 0.43, were prepared using the conventional columbite precursor method, and their structural phase transformation and piezoelectric behaviors near the morphotropic phase boundary (MPB) have been systematically investigated as a function of PbTiO3 content. X-ray diffraction (XRD) results demonstrate that the structure of the ceramics experiences a gradual transition process from rhombohedral phase to tetragonal phase with the increasing of PbTiO3 content, and that compositions with x=0.34-0.40 lie in the MPB region of this ternary system. A Raman spectra investigation of the ceramic samples testified to the transformation process of rhombohedral phase to tetragonal phase by comparing the relative intensities of tetragonal E(2TO1) mode and rhombohedral phase Rh mode. The structure information was also correlated to the parabola change of the piezoelectric constant; the maximum piezoelectric constants were obtained near the MPB region.  相似文献   

8.
Phase pure perovskite (1−xy)Pb(Ni1/3Nb2/3)O3-xPb(Zn1/3Nb2/3)O3-yPbTiO3 (PNN-PZN-PT) ferroelectric ceramics were prepared by conventional solid-state reaction method via a B-site oxide mixing route. The PNN-PZN-PT ceramics sintered at the optimized condition of 1185 °C for 2 h exhibit high relative density and rather homogenous microstructure. With the increase of PbTiO3 (PT) content, crystal structure and electrical properties of the synthesized PNN-PZN-PT ceramics exhibit successive phase transformation. A morphotropic phase boundary (MPB) is supposed to form in (0.9−x)PNN-0.1PZN-xPT at a region of x=32-36 mol% confirmed by X-ray diffraction (XRD) measurement and dielectric measurement. The MPB composition can be pictured as providing a “bridge” connecting rhombohedral ferroelectric (FE) phase and tetragonal one since crystal structure of the MPB composition is similar to both the rhombohedral and tetragonal lattices. Dielectric response of the sintered PNN-PZN-PT ceramics also exhibits successive phase-transition character. 0.64PNN-0.1PZN-0.26PT exhibits broad, diffused and frequency dependent dielectric peaks indicating a character of diffused FE-paraelectric (PE) phase transition of relaxor ferroelectrics and 0.40PNN-0.1PZN-0.50PT exhibits narrow, sharp and frequency independent dielectric peaks indicating a character of first-order FE-PE phase transition of normal ferroelectrics. The FE-PE phase transition of 0.56PNN-0.1PZN-0.34PT is nearly first-order with some diffused character, which also exhibits the largest value of piezoelectric constant d33 of 462pC/N.  相似文献   

9.
We investigated the behavior of the structure of titanium hydride (TiH2), an important compound in hydrogen storage research, at elevated temperatures (0-120 °C) and high pressures (1 bar-34 GPa). Temperature-induced changes of TiH2 as indicated in the alteration of the ambient X-ray demonstrated a cubic to tetragonal phase transition occurring at about 17 °C. The main focus of this study was to identify any pressure-induced structural transformations, including possible phase transitions, in TiH2. Synchrotron X-ray diffraction studies were carried out in situ (diamond anvil cell) in a compression sequence up to 34 GPa and in subsequent decompression to ambient pressure. The pressure evolution of the diffraction patterns revealed a cubic (Fm-3m) to tetragonal (I4/mmm) phase transition at 2.2 GPa. The high-pressure phase persisted up to 34 GPa. After decompression to ambient conditions the observed phase transition was completely reversible. A Birch-Murnaghan fit of the unit cell volume as a function of pressure yielded a zero-pressure bulk modulus K0=146(14) GPa, and its pressure derivative K0=6(1) for the high-pressure tetragonal phase of TiH2.  相似文献   

10.
Two new transition metal dinitrides, ReN2 and WN2, with the P4/mmm structure are investigated by the first-principles calculations. The computed shear moduli of 327 GPa for ReN2 and 334 GPa for WN2 exceed those of all transition metal dinitrides previously reported. The estimated theoretical hardness are 46.3 GPa for ReN2 and 47.9 GPa for WN2, respectively. The calculated high shear moduli and hardness indicate that they are potential ultrahard materials. It is important to note that the computed hardness of the weakest bond are 34.7 GPa (W-N) for WN2 and 33.1 GPa (Re-N) for ReN2, much higher than that of 21.1 GPa (Re-B) for ReB2, which suggests that tetragonal ReN2 and WN2 are probably harder than ReB2. The total and partial electron density of states and the electron localization function for ReN2 and WN2 are analyzed. We attribute the high bulk modulus, shear modulus, and hardness to a three-dimensional covalently bonded framework in tetragonal ReN2 and WN2. Our calculations show that tetragonal ReN2 is expected to be synthesized above 62.7 GPa and tetragonal WN2 may be hard to be synthesized.  相似文献   

11.
Magnetization and Np237 Mössbauer studies of the tetragonal compounds NpM2Si2 (M = Cr, Mn, Fe, Co, Ni, Cu) were performed. NpMn2Si2 is ferromagnetic. All other compounds order antiferromagnetically. Only in NpCu2Si2 the Mössbauer studies reveal a first order magnetic phase transition at TN = 34 K. It is interpreted in terms of Blume's model, originally developed for cubic UO2.  相似文献   

12.
The electrical properties and phase transition behavior of (Pb0.87La0.02Ba0.1)(Zr0.6Sn0.4−xTix)O3 solid solutions (PLBZST, 0.04≤x0.2) were investigated by the X-ray diffraction, permittivity, pyroelectric current, and P-E electric hysterisis loops. As the composition x increased from 0.04 to 0.2, the antiferroelectric ceramics (x≤0.07, AFE) with tetragonal phase changed to the ferroelectric relaxors (RFE, 0.09≤x). AFE ceramics showed a peculiar diffuse phase transition and dielectric relaxation at the low temperature (down to −100 °C) due to a frustration between AFE and FE state. With an increase in composition x, electrically field-induced AFE-FE switching field (EAFE-FE) and AFE-paraelectric (PE) phase transition temperature (Tc) are depressed in the temperature (T)-Ti composition (x) phase diagram, a FE-AFE-PE triple phase point (Ttr) with the lowest transition temperature occurred at x=0.09. The pyroelectric currents under an application of various external electric field (E) were measured to identify a T-E phase diagram of the PLBZST compound.  相似文献   

13.
Lead-free piezoelectric ceramics of (1−x)K0.5Na0.5NbO3-xLiTaO3 (KNN-LT) system have been investigated in this work. X-ray diffraction, Raman spectra measurements, DSC (Differential Scanning Calorimetric), and dielectric constant versus temperature provide direct evidence that the phase transition temperature between tetragonal and orthorhombic shift to lower temperature with the increasing of LT content. The KNN-0.05LT ceramics exhibit the highest high-field d33 up to 220 pm/V. At the same time, we also investigated the relationship between phase structure and electric properties, showing that the orthorhombic phase presents better piezoelectric temperature stabilities than the tetragonal phase. The result may provide a new way for KNN-based lead-free ceramics.  相似文献   

14.
A first-principles investigation of cuprite crystals (Cu2O and Ag2O) has been performed. For Cu2O, the calculated frequencies at the Γ point of the Brillouin zone are in very good agreement with the experimental frequencies. For Ag2O, the presence of Eu and F2u vibrational modes with negative frequencies indicates a low temperature phase transition, in agreement with recent high resolution X-ray and neutron diffraction measurements. The energy scanning along these two modes shows a double-well potential, within which only the Ag atoms vibrate. As a result, the origin of the phase transition can be attributed to displacive disorder of the Ag atoms.  相似文献   

15.
The structure of the ordered double perovskite Ba2CuUO6 has been investigated between room temperature and 800 °C using synchrotron X-ray powder diffraction. At room temperature Ba2CuUO6 is tetragonal, space group I4/m, a=8.82331(13) c=8.82330(13) Å, the structure being characterized by a large Jahn-Teller distortion of the CuO6 octahedra and small out-of-phase tilts of the BO6 octahedra. This Jahn-Teller distortion is also evident in the UV-Vis spectra. Analysis of the spontaneous tetragonal strain reveals a continuous ferroelastic phase transition near 420 °C. This appears to be related to the loss of the tilts whilst maintaining the Jahn-Teller distortion, so that the high temperature structure is in space group I4/mmm.  相似文献   

16.
The dielectric properties of ceramics in Pb(Zn1/3Nb2/3)O3-BaTiO3-PbTiO3 system were characterized using dielectric-temperature spectra. A spontaneous (zero field) relaxor-normal ferroelectric tran sition was observed for tetragonal rich compositions. A significant hysteresis effect accompanied by this transition, similar to first-order phase transition of normal ferroelectrics. This behavior was different from that of other relaxors, in which such transitions occurred only under a biased dc field. This observation was explained in terms of a thermally driven transformation from an ensemble of polar microregions to normal long-range ferroelectric state (micro-macro domain transition), which was attributed to the internal field resulting from the tetragonal strain.  相似文献   

17.
The phase transition of BiFeO3 (BFO) from tetragonal to monoclinic induced by pressure was investigated by first-principles method. The sequential monoclinic phase, MaMa, which is favorable during low compression with respect to the tetragonal phase, was characterized. The order parameters were calculated in the vicinity of the phase transition, showing that phase transition has a second-order character. The results demonstrated that the pressure-induced tetragonal-to-monoclinic phase transition in BFO is related to the softening behavior of the E mode, which are very helpful in further investigations of the morphotropic phase boundary (MPB) in lead-free materials.  相似文献   

18.
The solid solution series (2ZnX)x (CuInX2)1−x (X=S, Se, Te) were studied by the combination of laboratory and synchrotron X-ray and by neutron powder diffraction. Within the homologous series the tetragonal distortion ¼-u increases in the sequence S→Se→Te whereas the tetragonal deformation η=c/2a decreases. Besides that, with increasing 2ZnX content in CuInX2 the anion position parameter u increases as expected. The cation site occupancy in the chalcopyrite type phase of single phase tetragonal samples was obtained by Rietveld analysis of the neutron diffraction data. A non-statistic Zn distribution could be deduced for all three systems. The high temperature in situ diffraction experiments with synchrotron radiation on CuInX2 powder samples revealed the Cu-In anti-site occupation as the driving force of the temperature dependent phase transition from the chalcopyrite to the zinc-blende type structure.  相似文献   

19.
The dielectric properties of the [4-NH2C5H4NH] SbCl4 (abbreviated as 4-APCA) crystal were investigated under hydrostatic pressure up to 300 Mpa. The pressure-temperature phase diagram was given. The paraelectric-ferroelectric phase transition (II→III) temperature (Tc) increases linearly with increasing pressure with a slope dTc/dp=21×10−2 K/MPa. The pressure dependence of Curie-Weiss constants has been evaluated also. In the paraelectric phase (II) the Curie constant (C+) was pressure dependent whereas the C constant over the ferroelectric phase (III) was almost constant. The results are interpreted in terms of improper and displacive type phase transition model with a soft phonon at a zone boundary.  相似文献   

20.
Low-temperature specific-heat measurements on YbRh2Si2 at the second order antiferromagnetic (AF) phase transition reveal a sharp peak at TN=72 mK. The corresponding critical exponent α turns out to be α=0.38, which differs significantly from that obtained within the framework of the fluctuation theory of second order phase transitions based on the scale invariance, where α?0.1. We show that under the application of magnetic field the curve of the second order AF phase transitions passes into a curve of the first order ones at the tricritical point leading to a violation of the critical universality of the fluctuation theory. This change of the phase transition is generated by the fermion condensation quantum phase transition. Near the tricritical point the Landau theory of second order phase transitions is applicable and gives α?1/2. We demonstrate that this value of α is in good agreement with the specific-heat measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号